98%
921
2 minutes
20
Highly reflective mirrors are indispensable components in a variety of state-of-the-art photonic devices. Typically used, bulky, multi-layered distributed Bragg (DBR) reflectors are limited to lattice-matched semiconductors or nonconductive dielectrics. Here, we introduce an inverted refractive index-contrast grating (ICG) as compact, single-layer alternative to DBR. In the ICG, a subwavelength one-dimensional grating made of a low-refractive-index material is implemented on a high-refractive-index cladding. Our numerical simulations show that the ICG provides nearly total optical power reflectance for the light incident from the side of the cladding whenever the refractive index of the grating exceeds 1.75, irrespective of the refractive index of the cladding. Additionally, the ICG enables polarization discrimination and phase tuning of the reflected and transmitted light, the property not achievable with the DBR. We experimentally demonstrate a proof-of-concept ICG fabricated according to the proposed design, using the technique of sub-µm 3D laser lithography in which thin stripes of IP-Dip photoresist are micro-printed on a Si cladding. This one-step method avoids laborious and often destructive etching-based procedures for grating structuration, making it possible to implement the grating on any arbitrary cladding material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501227 | PMC |
http://dx.doi.org/10.1515/nanoph-2023-0283 | DOI Listing |
Nat Nanotechnol
September 2025
School of Engineering, The University of Tokyo, Tokyo, Japan.
Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light-matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
A new x-ray beamline at the Physikalisch-Technische Bundesanstalt laboratory at BESSY II provides monochromatized radiation in the energy range from 1 to 10 keV, with a typical focus size of 20 μm. It is not only optimized for high-resolution x-ray spectrometry and microscopy but also enables scattering experiments and radiometric measurements. The innovative monochromator consists of a plane grating monochromator module equipped with multilayer-coated blazed gratings for x-ray energies up to 4 keV and an integrated double-crystal monochromator module equipped with silicon (111) crystals for x-ray energies ranging from 2.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Mathematics, Northwest University, Xi'an, China.
This study sought to enhance visual acuity assessment using steady-state visual evoked potentials (SSVEPs) through subject-specific training methods. SSVEPs were elicited from eleven subjects using the vertical sinusoidal gratings at six various spatial frequency steps, and then the classical approach of Oz single-channel, the spatial filtering method of canonical correlation analysis (CCA), and five subject-specific training methods, i.e.
View Article and Find Full Text PDFNeuroscience
September 2025
Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:
Visual motion perception declines during natural aging in most animals including humans. Edible berries of blackcurrant (BC) and its extracted anthocyanins (BCAs) have beneficial effects on human eyes. However, the effect of BCAs on the perception of moving objects and other dynamic visual patterns remains unknown.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
Real-time and accurate temperature monitoring has been widely recognized in both academia and industry to ensure battery operation safety. Traditional techniques are generally limited to incomplete information caused by discrete sampling points. Hence, the spiral-serpentine distributed optical fiber sensor (DOFS) layout is presented to realize in-situ full-range temperature measurement.
View Article and Find Full Text PDF