Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
While previous work has identified the conditions for preparing ultrastable single-component organic glasses by physical vapor deposition (PVD), little is known about the stability of codeposited mixtures. Here, we prepared binary PVD glasses of organic semiconductors, TPD (,'-Bis(3-methylphenyl)-,'-diphenylbenzidine) and m-MTDATA (4,4',4″-Tris[phenyl(m-tolyl)amino]triphenylamine), with a 50:50 mass concentration over a wide range of substrate temperatures (). The enthalpy and kinetic stability are evaluated with differential scanning calorimetry and spectroscopic ellipsometry. Binary organic semiconductor glasses with exceptional thermodynamic and kinetic stability comparable to the most stable single-component organic glasses are obtained when deposited at = 0.78-0.90 (where is the conventional glass transition temperature). When deposited at 0.94, the enthalpy of the m-MTDATA/TPD glass equals that expected for the equilibrium liquid at that temperature. Thus, the surface equilibration mechanism previously advanced for single-component PVD glasses is also applicable for these codeposited glasses. These results provide an avenue for designing high-performance organic electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00728 | DOI Listing |