Physical vapor deposition (PVD) is a method of glass formation in which molecules utilize enhanced mobility at the free surface to reach highly equilibrated amorphous states. Codeposited glasses, made by simultaneously depositing more than one type of molecule onto the same substrate, are of technological and fundamental interest. Here, we use PVD to codeposit glasses of methyl--toluate ( = 170.
View Article and Find Full Text PDFHighly ordered liquid crystalline (LC) phases have important potential for organic electronics. We studied the molecular alignment and domain structure in a columnar LC thin film with nanometer resolution during in situ heating using four-dimensional scanning transmission electron microscopy (4D STEM). The initial disordered vapor-deposited LC glass thin film rapidly ordered at its glass transition temperature into a hexagonal columnar phase with small (<10 nm), well-aligned, planar domains (columns oriented parallel to the surface).
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
Physical vapor deposition (PVD) is widely utilized for the production of organic semiconductor devices due to its ability to form thin layers with exceptional properties. Although the layers in the device usually consist of two or more components, there is limited understanding about the fundamental characteristics of such multicomponent vapor-deposited glasses. Here, spectroscopic ellipsometry was employed to characterize the densities, thermal stabilities, and optical properties of covapor deposited NPD and TPD glasses across the entire range of composition.
View Article and Find Full Text PDFIn order to determine the structural relaxation time of a polymer glass during deformation, a strain rate switching experiment is performed in the steady-state plastic flow regime. A lightly cross-linked poly(methylmethacrylate) glass was utilized and, simultaneously, the segmental motion in the glass was quantified using an optical probe reorientation method. After the strain rate switch, a nonmonotonic stress response is observed, consistent with previous work.
View Article and Find Full Text PDF