Coupling of protein condensates to ordered lipid domains determines functional membrane organization.

Sci Adv

Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During T cell activation, the transmembrane adaptor protein LAT (linker for activation of T cells) forms biomolecular condensates with Grb2 and Sos1, facilitating signaling. LAT has also been associated with cholesterol-rich condensed lipid domains; However, the potential coupling between protein condensation and lipid phase separation and its role in organizing T cell signaling were unknown. Here, we report that LAT/Grb2/Sos1 condensates reconstituted on model membranes can induce and template lipid domains, indicating strong coupling between lipid- and protein-based phase separation. Correspondingly, activation of T cells induces cytoplasmic protein condensates that associate with and stabilize raft-like membrane domains. Inversely, lipid domains nucleate and stabilize LAT protein condensates in both reconstituted and living systems. This coupling of lipid and protein assembly is functionally important, as uncoupling of lipid domains from cytoplasmic protein condensates abrogates T cell activation. Thus, thermodynamic coupling between protein condensates and ordered lipid domains regulates the functional organization of living membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132753PMC
http://dx.doi.org/10.1126/sciadv.adf6205DOI Listing

Publication Analysis

Top Keywords

lipid domains
24
protein condensates
20
coupling protein
12
condensates ordered
8
lipid
8
ordered lipid
8
cell activation
8
activation cells
8
phase separation
8
condensates reconstituted
8

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.

View Article and Find Full Text PDF

Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.

View Article and Find Full Text PDF

Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF