98%
921
2 minutes
20
Applications of abundant seawater in electrochemical energy conversion are constrained due to the sluggish oxygen evolution reaction and the corrosive chlorine oxidation reaction. Hence, it is imperative to develop an efficient anodic reaction alternative suitable for coupling with the cathodic counterpart. Due to a low thermodynamic oxidation potential, hydrazine oxidation reaction (HzOR) offers a unique pathway to overcome these challenges. Herein, spontaneously in situ reduced atomic scale Pd surface-confined to electrochemically prepared layered Co(OH) on carbon cloth is synthesized. This study reveals the hydrazine and Pd-dependent morphological evolution of Co(OH) and its Pd hybrids into nanoparticulate form. Unlike various layered double hydroxides, Pd integrated Co(OH) benefits from the contribution of Co(OH) as an active HzOR catalyst and the reductive support to host Pd, resulting in synergistically improved performances. Mass activities of Pd in alkaline and alkaline saline electrolyte are 11.24 and 9.83 A mg at 200 mV, respectively, corresponding to the highest HzOR activities among noble metals. The optimized Pd hybrid demonstrates ≈6.5 times the current density relative to PtC (14.91 mA cm at 200 mV) in alkaline saline water with hydrazine. These findings would be beneficial to realize high overpotential anodic alternatives and reduce over-dependence on freshwater for electrocatalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375158 | PMC |
http://dx.doi.org/10.1002/advs.202300639 | DOI Listing |
Biomacromolecules
September 2025
City University of Applied Sciences, Neustadtswall 30, Bremen 28199, Germany.
Fibrinogen nanofiber scaffolds hold promise for tissue engineering and wound healing due to their similarity to fibrin clots. We studied how alkaline salts (Na, K) influence fibrinogen precipitation during drying of highly saline dispersions. In situ roughness (Aq) monitoring revealed coprecipitation of salts and fibrinogen.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
Saline-alkali soil poses a severe threat to the cultivation and yield of soybean, which is an important oilseed and staple crop. As a key metabolic intermediate, S-adenosyl-L-methionine (SAM) and its associated methyltransferases (SAMMTs) play crucial but poorly understood roles in plant stress responses. This study investigated the expression of SAM-depend methyltransferase (SAMMt) family in soybean.
View Article and Find Full Text PDFhas long been used in folk medicine to treat a variety of ailments, including diabetes, skin disorders, dropsy, cuts, wounds, ulcers, fever, and blood disorders, etc., which are generally categorized under the complications of diabetes mellitus. Various species of this genus have also been verified to possess strong anti-diabetic activity.
View Article and Find Full Text PDFPhysiol Plant
September 2025
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
Leymus chinensis is a perennial grass with remarkable adaptability and forage quality. It is the dominant species on the saline-alkali land in the Songnen Plain in Northeast China, where two ecotypes naturally grow: the grey-green (GG) and yellow-green (YG) genotypes, named after the leaf color. However, the differences in morphology and adaptability between the GG and YG ecotypes are not elucidated.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2025
School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
Ammonia oxidation plays a critical role in nitrogen cycling within riparian zones. To investigate this process in saline-alkali soils of the Yinbei region, northern Yinchuan, Ningxia, we selected five distinct riparian types along the Third Drainage Ditch: gravel-reed mixed zone, reed zone, high-salt zone, embankment zone and bare soil zone. We quantified soil potential nitrification rates (PNR), environmental factors, and analyzed ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities via me-tagenomics and qPCR targeting genes.
View Article and Find Full Text PDF