A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Wood induced preparation of FeC decorated biochar for peroxymonosulfate activation towards bisphenol a degradation with low ion leaching. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterogeneous iron/persulfate system suffers from the problems of high ion leaching, severe catalyst surface corrosion and low performance stability. Herein, a series of iron compound incorporated N doped biochar composite catalysts were prepared from pyrolyzing wood powder and ferric ferrocyanide mixture, which were used for bisphenol A (BPA) degradation in water through peroxymonosulfate (PMS) activation. It was found that the reducing gases released from wood powder at different pyrolysis temperature significantly affected the crystalline phase of the iron compound in the catalyst, in which pure phase iron carbide (FeC) decorated N doped biochar was obtained at pyrolysis temperature of 600 °C or higher. Wood powder was introduced as both FeC formation inductive agent and biochar precursor. FeC/biochar exhibited optimal BPA degradation performance, in which 0.5 g/L of catalyst could completely degrade 0.05 mM BPA within 30 min. Radical, high valent iron-oxo, and non-radical species were all generated in the reaction system by both FeC and N doped biochar, respectively. Moreover, the multi-valence nature of Fe in FeC enabled the reaction system with remarkably reduced Fe ion leaching and negligible iron sludge production since FeC could activate PMS through a heterogeneous mechanism. Having multiple active species generated for BPA degradation, the prepared catalyst also showed promising adaptability and recyclability. This study can provide a new solution for the design of iron based catalyst/PMS system for organic pollutant degradations with low ion release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117978DOI Listing

Publication Analysis

Top Keywords

ion leaching
12
doped biochar
12
wood powder
12
bpa degradation
12
fec decorated
8
low ion
8
iron compound
8
pyrolysis temperature
8
phase iron
8
species generated
8

Similar Publications