Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Antimicrobial polymers exhibit great potential for treating drug-resistant bacteria; however, designing antimicrobial polymers that can selectively kill bacteria and cause relatively low toxicity to normal tissues/cells remains a key challenge. Here, we report a pH window for ionizable polymers that exhibit high selectivity toward bacteria. Ionizable polymer PC6A showed the greatest selectivity (131.6) at pH 7.4, exhibiting low hemolytic activity and high antimicrobial activity against bacteria, whereas a very high or low protonation degree (PD) produced relatively low selectivity (≤35.6). Bactericidal mechanism of PC6A primarily comprised membrane lysis without inducing drug resistance even after consecutive incubation for 32 passages. Furthermore, PC6A demonstrated synergistic effects in combination with antibiotics at pH 7.4. Hence, this study provides a strategy for designing selective antimicrobial polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c23240 | DOI Listing |