Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurate and quantitative identification of unbalanced force during operation is of utmost importance to reduce the impact of unbalanced force on a hypergravity centrifuge, guarantee the safe operation of a unit, and improve the accuracy of a hypergravity model test. Therefore, this paper proposes a deep learning-based unbalanced force identification model, then establishes a feature fusion framework incorporating the Residual Network (ResNet) with meaningful handcrafted features in this model, followed by loss function optimization for the imbalanced dataset. Finally, after an artificially added, unbalanced mass was used to build a shaft oscillation dataset based on the ZJU-400 hypergravity centrifuge, we used this dataset to train the unbalanced force identification model. The analysis showed that the proposed identification model performed considerably better than other benchmark models based on accuracy and stability, reducing the mean absolute error (MAE) by 15% to 51% and the root mean square error (RMSE) by 22% to 55% in the test dataset. Simultaneously, the proposed method showed high accuracy and strong stability in continuous identification during the speed-up process, surpassing the current traditional method by 75% in the MAE and by 85% in the median error, which provided guidance for counterweight and guaranteed the unit's stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141951 | PMC |
http://dx.doi.org/10.3390/s23083797 | DOI Listing |