Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3). Sham interventions served as controls and healthy animals (Control, n = 3) served as a reference in sequencing study. Myocardial samples from the LV of each group were subjected to RNA sequencing. RNA-seq analysis revealed a clear distinction between the transcriptomes of myocardial fibrosis (MF) models. Cardiotoxic drugs activated the TNF-alpha and adrenergic signaling pathways. Pressure or volume overload led to the activation of FoxO pathway. Significant upregulation of pathway components enabled the identification of potential drug candidates used for the treatment of heart failure, such as ACE inhibitors, ARB, ß-blockers, statins and diuretics specific to the distinct MF models. We identified candidate drugs in the groups of channel blockers, thiostrepton that targets the FOXM1-regulated ACE conversion to ACE2, tyrosine kinases or peroxisome proliferator-activated receptor inhibitors. Our study identified different gene targets involved in the development of distinct preclinical MF protocols enabling tailoring expression signature-based approach for the treatment of MF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139067PMC
http://dx.doi.org/10.3390/ijms24087461DOI Listing

Publication Analysis

Top Keywords

cardiotoxic drugs
8
volume overload
8
fibrosis
5
identification gene
4
gene expression
4
expression signatures
4
signatures phenotype-specific
4
phenotype-specific drug
4
drug targeting
4
targeting cardiac
4

Similar Publications

Fluoropyrimidines are a class of chemotherapy drugs used to treat various solid tumors. 5-Fluorouracil (5-FU) an antimetabolite in the fluoropyrimidine family, which has shown remarkable efficacy against a variety of solid tumors, is a crucial medication in the treatment of cancer. However, severe organ toxicities frequently restrict its therapeutic potential.

View Article and Find Full Text PDF

Cancer therapy-induced cardiotoxicity (CTIC) is a serious and increasingly recognized cause of death and disability among cancer survivors. It frequently necessitates the withdrawal or dose reduction of effective anticancer drugs, limiting therapeutic options and affecting patient outcomes. While CTIC poses a major health risk, the precise cellular and molecular mechanisms responsible for this toxicity remain elusive, which complicates the development of preventive and therapeutic strategies.

View Article and Find Full Text PDF

Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death worldwide. Doxorubicin (Dox), a conventional chemotherapeutic agent, exhibits unsatisfactory efficacy in HCC due to its poor tumor response, severe cardiotoxicity, and drug resistance. It is urgent to develop strategies to mitigate the side effects and enhance the chemosensitivity of conventional chemotherapy drugs.

View Article and Find Full Text PDF

Anti-cancer therapy offers significant risks for cardiovascular diseases, including hypertension, thromboembolic ischaemia, arrhythmias, dyslipidaemia, hyperglycemia, obesity, and high cholesterol. Cardiotoxicity is a leading cause of elevated mortality rates among cancer patients, and anti-cancer drugs often contribute to this issue. Emerging research highlights the role of microRNA (miRNAs) in regulating drug-induced cardiotoxicity by influencing genetic, epigenetic, transcriptional, and translational processes.

View Article and Find Full Text PDF