Publications by authors named "Ena Hasimbegovic"

Circular RNAs (circRNAs) are a class of endogenous, covalently closed RNA molecules. Unlike linear RNAs, circRNAs are formed through noncanonical splicing, during which a downstream donor site is ligated with an upstream splice acceptor site, building a backsplice junction (BSJ), the distinguishing feature of circRNAs. The inherent feature of circRNAs is their lack of 5' cap structures and 3' poly(A) tails, which are typically found in linear RNAs.

View Article and Find Full Text PDF

Aims: Cardiac miR-132 has been proposed as a target for heart failure (HF) therapy. CDR132L, a rationally designed synthetic oligonucleotide inhibitor of miR-132 has proved pre-clinical efficacy in non-ischaemic and ischaemic large animal HF models. The safety and tolerability of CDR132L were tested in chronic HF patients in a Phase 1b study (NCT04045405) and is currently being tested in a Phase 2 trial in post-MI HF patients (NCT05350969).

View Article and Find Full Text PDF

The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results.

View Article and Find Full Text PDF

Endothelial dysfunction mediated by elevated levels of autoantibodies against vasoactive peptides occurring after COVID-19 infection is proposed as a possible pathomechanism for orthostatic intolerance in long COVID patients. This case-control study comprised 100 long COVID patients from our prospective POSTCOV registry and three control groups, each consisting of 20 individuals (Asymptomatic post-COVID group; Healthy group = pan-negative for antispike protein of SARS-CoV-2; Vaccinated healthy group = no history of COVID-19 and vaccinated). Autoantibodies towards muscarinic acetylcholine receptor M3, endothelin type A receptor (ETAR), beta-2 adrenergic receptor (Beta-2 AR), angiotensin II receptor 1 and angiotensin 1-7 (Ang1-7) concentrations were measured by enzyme-linked immunosorbent assay in long COVID patients and controls.

View Article and Find Full Text PDF

Patients with long COVID syndrome present with various symptoms affecting multiple organs. Vaccination before or after SARS-CoV-2 infection appears to reduce the incidence of long COVID or at least limit symptom deterioration. However, the impact of vaccination on the severity and extent of multi-organ long COVID symptoms and the relationship between the circulating anti-spike protein antibody levels and the severity and extent of multi-organ symptoms are unclear.

View Article and Find Full Text PDF

Cardiac magnetic resonance (CMR) studies reported CMR abnormalities in patients with mild-moderate SARS-CoV-2 infection, suggesting ongoing myocardial inflammation. Patients ( = 278, 43 ± 13 years, 70.5% female) with post-acute sequelae of SARS-CoV-2 cardiovascular syndrome (PASC-CVS) were included prospectively into the Vienna POSTCOV Registry between March 2021 and March 2023 (clinicaltrials.

View Article and Find Full Text PDF

Despite the widespread use of doxorubicin (DOX) as a chemotherapeutic agent, its severe cumulative cardiotoxicity represents a significant limitation. While the liposomal encapsulation of doxorubicin (Myocet, MYO) reduces cardiotoxicity, it is crucial to understand the molecular background of doxorubicin-induced cardiotoxicity. Here, we examined circular RNA expression in a translational model of pigs treated with either DOX or MYO and its potential impact on the global gene expression pattern in the myocardium.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) reactivation may be involved in long-COVID symptoms, but reactivation of other viruses as a factor has received less attention. Here we evaluated the reactivation of parvovirus-B19 and several members of the Herpesviridae family (DNA viruses) in patients with long-COVID syndrome. We hypothesized that monovalent COVID-19 vaccines inhibit viral interference between SARS-CoV-2 and several DNA viruses in patients with long-COVID syndrome, thereby reducing clinical symptoms.

View Article and Find Full Text PDF

Small extracellular vesicles (EVs) and their cargo are an important component of cell-to-cell communication in cardiac disease. Allogeneic adipose derived stem cells (ADSCs) are thought to be a potential approach for cardiac regenerative therapy in ischemic heart disease. The SCIENCE study investigated the effect of ADSCs administered via intramyocardial injection on cardiac function in patients with ischemic heart disease.

View Article and Find Full Text PDF

We have designed translational animal models to investigate cardiac profibrotic gene signatures. Domestic pigs were treated with cardiotoxic drugs (doxorubicin, DOX, n = 5 or Myocet, MYO, n = 5) to induce replacement fibrosis via cardiotoxicity. Reactive interstitial fibrosis was triggered by LV pressure overload by artificial isthmus stenosis with stepwise developing myocardial hypertrophy and final fibrosis (Hyper, n = 3) or by LV volume overload in the adverse remodeled LV after myocardial infarction (RemoLV, n = 3).

View Article and Find Full Text PDF

To investigate long COVID-19 syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as patients with long COVID-19 syndrome (LCS). Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to patients with LCS. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS.

View Article and Find Full Text PDF

Background: Congestion and plasma volume expansion are important features of heart failure, whose prognostic significance has been investigated in a range of surgical and non-surgical settings. The aim of this study was to evaluate the value of the estimated plasma volume status (ePVS) in patients undergoing isolated tricuspid valve surgery.

Methods: This study included patients who underwent isolated tricuspid valve surgery at the Vienna General Hospital (Austria) between July 2008 and November 2018.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has rapidly become a viable alternative to the conventional isolated surgical aortic valve replacement (iSAVR) for treating severe symptomatic aortic stenosis. However, data on younger patients is scarce and a gap exists between data-based recommendations and the clinical use of TAVR. In our study, we utilized a machine learning (ML) driven approach to model the complex decision-making process of Heart Teams when treating young patients with severe symptomatic aortic stenosis with either TAVR or iSAVR and to identify the relevant considerations.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) offers a novel treatment option for patients with severe symptomatic aortic valve stenosis, particularly for patients who are unsuitable candidates for surgical intervention. However, high therapeutical costs, socio-economic considerations, and numerous comorbidities make it necessary to target and allocate available resources efficiently. In the present study, we aimed to identify risk factors associated with futile treatment following transfemoral (TF) and transapical (TA) TAVR.

View Article and Find Full Text PDF

Alternative splicing, a driver of posttranscriptional variance, differs from canonical splicing by arranging the introns and exons of an immature pre-mRNA transcript in a multitude of different ways. Although alternative splicing was discovered almost half a century ago, estimates of the proportion of genes that undergo alternative splicing have risen drastically over the last two decades. Deep sequencing methods and novel bioinformatic algorithms have led to new insights into the prevalence of spliced variants, tissue-specific splicing patterns and the significance of alternative splicing in development and disease.

View Article and Find Full Text PDF

Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response.

View Article and Find Full Text PDF

Background: Younger patients with severe symptomatic aortic stenosis are a particularly challenging collective with regard to the choice of intervention. High-risk patients younger than 75 years of age are often eligible for both the transcatheter aortic valve replacement (TAVR) and the isolated surgical aortic valve replacement (iSAVR). Data on the outcomes of both interventions in this set of patients are scarce.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the differences in outcome arising from the use of semi-compliant (SCB) versus non-compliant balloon (NCB) systems for predilatation during self-expanding transcatheter aortic valve replacement (TAVR).

Methods: 251 TAVR procedures with the implantation of self-expanding valves after predilatation were analyzed. SCB systems were used in 166 and NCB systems in 85 patients.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are classified as long non-coding RNAs (lncRNAs) that are characterized by a covalent closed-loop structure. This closed-loop shape is the result of a backsplicing event in which the 3' and 5' splice sites are ligated. Through the lack of 3' poly(A) tails and 5' cap structures, circRNAs are more stable than linear RNAs because these adjustments make the circular loop less susceptible to exonucleases.

View Article and Find Full Text PDF

Aims: Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI.

View Article and Find Full Text PDF

The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications.

View Article and Find Full Text PDF

Cardiac hypertrophy is an ongoing clinical challenge, as risk factors such as obesity, smoking and increasing age become more widespread, which lead to an increasing prevalence of developing hypertrophy. Pathological hypertrophy is a maladaptive response to stress conditions, such as pressure overload, and involve a number of changes in cellular mechanisms, gene expression and pathway regulations. Although several important pathways involved in the remodeling and hypertrophy process have been identified, further research is needed to achieve a better understanding and explore new and better treatment options.

View Article and Find Full Text PDF

Anti-fibrotic therapies are of increasing interest to combat cardiac remodeling and heart failure progression. Recently, anti-fibrotic circular RNAs (circRNAs) have been identified in human and rodent cardiac tissue. In vivo (rodent) experiments proved cardiac anti-fibrotic effects of the natural compounds bufalin and lycorine by downregulating miRNA-671-5p, associated with a theoretic increase in the tissue level of circRNA CDR1as.

View Article and Find Full Text PDF

Cardiosphere-derived cells (CDCs) are progenitor cells derived from heart tissue and have shown promising results in preclinical models. APOSEC, the secretome of irradiated peripheral blood mononuclear cells, has decreased infarct size in acute and chronic experimental myocardial infarction (MI). We enhanced the effect of CDCs with APOSEC preconditioning (apoCDC) and investigated the reparative effect in a translational pig model of reperfused MI.

View Article and Find Full Text PDF