A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatially Addressable Multiplex Biodetection by Calibrated Micro/Nanostructured Surfaces. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A challenge of any biosensing technology is the detection of very low concentrations of analytes. The fluorescence interference contrast (FLIC) technique improves the fluorescence-based sensitivity by selectively amplifying, or suppressing, the emission of a fluorophore-labeled biomolecule immobilized on a transparent layer placed on top of a mirror basal surface. The standing wave of the reflected emission light means that the height of the transparent layer operates as a surface-embedded optical filter for the fluorescence signal. FLIC extreme sensitivity to wavelength is also its main problem: small, e.g., 10 nm range, variations of the vertical position of the fluorophore can translate in unwanted suppression of the detection signal. Herein, we introduce the concept of quasi-circular lenticular microstructured domes operating as continuous-mode optical filters, generating fluorescent concentric rings, with diameters determined by the wavelengths of the fluorescence light, in turn modulated by FLIC. The critical component of the lenticular structures was the shallow sloping side wall, which allowed the simultaneous separation of fluorescent patterns for virtually any fluorophore wavelength. Purposefully designed microstructures with either stepwise or continuous-slope dome geometries were fabricated to modulate the intensity and the lateral position of a fluorescence signal. The simulation of FLIC effects induced by the lenticular microstructures was confirmed by the measurement of the fluorescence profile for three fluorescent dyes, as well as high-resolution fluorescence scanning using stimulated emission depletion (STED) microscopy. The high sensitivity of the spatially addressable FLIC technology was further validated on a diagnostically important target, i.e., the receptor-binding domain (RBD) of the SARS-Cov2 via the detection of RBD:anti-S1-antibody.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.2c01939DOI Listing

Publication Analysis

Top Keywords

spatially addressable
8
transparent layer
8
fluorescence signal
8
fluorescence
6
flic
5
addressable multiplex
4
multiplex biodetection
4
biodetection calibrated
4
calibrated micro/nanostructured
4
micro/nanostructured surfaces
4

Similar Publications