Biosens Bioelectron
February 2024
Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport within living cells. The characteristics of molecular motors, i.e.
View Article and Find Full Text PDFBackground: Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells.
View Article and Find Full Text PDFProtein Expr Purif
October 2023
The human cell line HEK293 is one of the preferred choices for manufacturing therapeutic proteins and viral vectors for human applications. Despite its increased use, it is still considered in disadvantage in production aspects compared to cell lines such as the CHO cell line. We provide here a simple workflow for the rapid generation of stably transfected HEK293 cells expressing an engineered variant of the SARS-CoV-2 Receptor Binding Domain (RBD) carrying a coupling domain for linkage to VLPs through a bacterial transpeptidase-sortase (SrtA).
View Article and Find Full Text PDFA challenge of any biosensing technology is the detection of very low concentrations of analytes. The fluorescence interference contrast (FLIC) technique improves the fluorescence-based sensitivity by selectively amplifying, or suppressing, the emission of a fluorophore-labeled biomolecule immobilized on a transparent layer placed on top of a mirror basal surface. The standing wave of the reflected emission light means that the height of the transparent layer operates as a surface-embedded optical filter for the fluorescence signal.
View Article and Find Full Text PDFNew influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established.
View Article and Find Full Text PDFPlasmid transfection of mammalian cells is the dominant platform used to produce adeno-associated virus (AAV) vectors for clinical and research applications. Low yields from this platform currently make it difficult to supply these activities with adequate material. In an effort to better understand the current limitations of transfection-based manufacturing, this study examines what proportion of cells in a model transfection produce appreciable amounts of assembled AAV capsid.
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms-technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID and ddPCR) are developed to quantify infectious and total viral titer.
View Article and Find Full Text PDFVaccine design strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the Spike protein or its subunits as the main antigen target of neutralizing antibodies. In this work, we propose rapid production methods of an extended segment of the Spike Receptor Binding Domain (RBD) in HEK293SF cells cultured in suspension, in serum-free media, as a major component of a COVID-19 subunit vaccine under development. The expression of RBD, engineered with a sortase-recognition motif for protein-based carrier coupling, was achieved at high yields by plasmid transient transfection or human type-5-adenoviral infection of the cells, in a period of only two and three weeks, respectively.
View Article and Find Full Text PDFThe Ebola virus (EBOV) VP40 matrix protein (eVP40) orchestrates assembly and budding of virions in part by hijacking select WW-domain-bearing host proteins via its PPxY late (L)-domain motif. Angiomotin (Amot) is a multifunctional PPxY-containing adaptor protein that regulates angiogenesis, actin dynamics, and cell migration/motility. Amot also regulates the Hippo signaling pathway via interactions with the WW-domain-containing Hippo effector protein Yes-associated protein (YAP).
View Article and Find Full Text PDFEbola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors.
View Article and Find Full Text PDFToxin-antitoxin (TA) modules are two component "addictive" genetic elements found on either plasmid or bacterial chromosome, sometimes on both. TA systems perform a wide range of functions like biofilm formation, persistence, programmed cell death, phage abortive infection etc. Salmonella has been reported to contain several such TA systems.
View Article and Find Full Text PDFThe influenza A(H1N1)pdm09 virus caused the first influenza pandemic of the 21st century. In this study, we wanted to decipher the role of conserved basic residues of the viral M1 matrix protein in virus assembly and release. M1 plays many roles in the influenza virus replication cycle.
View Article and Find Full Text PDF