98%
921
2 minutes
20
Interfacial tension governs the behaviors and physiological functions of multiple biological condensates during diverse biological processes. Little is known about whether there are cellular surfactant factors that regulate the interfacial tension and functions of biological condensates within physiological environments. TFEB, a master transcription factor that controls expression of autophagic-lysosomal genes, assembles into transcriptional condensates to control the autophagy-lysosome pathway (ALP). Here, we show that interfacial tension modulates the transcriptional activity of TFEB condensates. MLX, MYC, and IPMK act as synergistic surfactants to decrease the interfacial tension and consequent DNA affinity of TFEB condensates. The interfacial tension of TFEB condensates is quantitatively correlated to their DNA affinity and subsequent ALP activity. The interfacial tension and DNA affinity of condensates formed by TAZ-TEAD4 are also regulated by the synergistic surfactant proteins RUNX3 and HOXA4. Our results indicate that the interfacial tension and functions of biological condensates can be controlled by cellular surfactant proteins in human cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2023.04.004 | DOI Listing |
Langmuir
September 2025
ThAMeS Multiphase, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
The evaporation of surfactant-laden sessile droplets has widespread applications in both natural and technological contexts. This study explores the evaporation of droplets containing a nonionic surfactant (tristyrylphenol ethoxylates (EOT)), an anionic surfactant (sodium benzenesulfonate with alkyl chain lengths of C-C (NaDDBS)), and their mixtures at / mole ratios of 0.01, 0.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFLangmuir
September 2025
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory for Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China; National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China. Electronic address:
Hypothesis: The surface free energy (γ) and solubility (δ) parameters are two important characteristic parameters describing physicochemical properties of substances, but knowledge about the characteristic parameters (γ and δ) of surfactants is still lacking. Possible relationships of the characteristic parameters of surfactants with their head group types and alkyl chain lengths as well as with the surface tension (σ) of their aqueous solutions are worth exploring.
Methods: Solid surfactants including 10 anionic and 14 cationic ones were chosen.
J Hazard Mater
September 2025
Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China; Key Laboratory of Soil and Groundwater Pollution Control and Green Restoration, Sinopec, China.
Surfactant-enhanced aquifer remediation (SEAR) is an effective strategy for removing dense non-aqueous phase liquids (DNAPLs) from contaminated groundwater. While Gemini surfactants possess unique dimeric structures and excellent physicochemical properties, the role of hydrophobic chain length in governing their solubilization performance has not been systematically clarified. Here, five sugar-based anionic-nonionic Gemini surfactants (SANG 06, 08, 09, 10, and 13) with different hydrophobic chain lengths were synthesized and evaluated.
View Article and Find Full Text PDF