98%
921
2 minutes
20
Background: Nonalcoholic fatty liver disease (NAFLD), a chronic and progressive liver disease, often causes steatosis and steatohepatitis. Qi-Ge decoction (QGD) shows a good effect against NAFLD in the clinic. But the molecular mechanism for QGD in improving NAFLD is unknown.
Purpose: This study explored the molecular mechanism of QGD in NAFLD model rats using comprehensive network pharmacology, molecular docking and verification strategies.
Methods: Active components and targets of QGD were obtained from public database. The overlapped genes between QGD and NAFLD targets were analyzed by enrichment analysis. Active components and targets were used to predict molecular docking analysis. Finally, seven key targets were screened out and the gene expression were verified in the NAFLD rat's liver tissues after QGD treatment.
Results: Fifty-eight common QGD therapeutic targets were associated with NAFLD. Molecular docking demonstrated that seven targets had strong binding ability for the corresponding active ingredients. GO analysis identified 18 biological process entries, which were mainly related to regulation of lipid storage, lipid localization and peptide transport. KEGG analysis identified multiple signaling pathways, which were mainly associated with tumor necrosis factor signaling and NAFLD. data confirmed that the effect of QGD in the treatment of NAFLD was mainly exerted through improving liver steatosis and inflammatory cell infiltration. Additionally, QGD upregulated the expression of MAPK8 and ESR1 and downregulated the transcriptional expression of IL6, VEGFA, CASP3, EGFR and MYC. These targets may affect lipid metabolism by regulating lipid storage and inflammation.
Conclusion: The integration of results obtained and indicated that QGD regulates multiple targets, biological processes and signaling pathways in NAFLD, which may represent a complex molecular mechanism by which QGD improves NAFLD.Key messagesQGD intervention is related to multiple biological processes such as inflammation, oxidation and cell apoptosis in NAFLD.Lipid and atherosclerosis, TNF signaling pathway, IL-17 signaling pathway, non-alcoholic fatty liver disease and AGE-RAGE signaling pathway in diabetic complications are the main pathways for QGD intervention NAFLD.The active components of QGD can form good binding with relevant target proteins through intermolecular forces, exhibiting excellent docking activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281479 | PMC |
http://dx.doi.org/10.1080/07853890.2023.2200258 | DOI Listing |
Micromachines (Basel)
August 2025
Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, 98166 Messina, Italy.
This work presents a novel and fully virtual flow for extracting the SPICE model of a power MOSFET, starting exclusively from TCAD simulations. Unlike traditional approaches that rely on experimental silicon data, our methodology enables designers to optimize the device performance and extract accurate electrical parameters before any physical prototyping is required. By leveraging advanced TCAD tools, we generate a realistic device structure and obtain all the key electrical characteristics, which are then used for precise SPICE model extraction and macromodel integration.
View Article and Find Full Text PDFMicromachines (Basel)
April 2025
Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China.
This paper proposes a 1200V 4H-SiC MOSFET incorporating a High-K dielectric-integrated fused source-gate (HKSG) structure, engineered to concurrently enhance the third-quadrant operation and high-frequency figure of merit (HF-FOM). The High-K dielectric enhances the electric field effect, reducing the threshold voltage of the source-gate. As a result, the reverse conduction voltage drops from 2.
View Article and Find Full Text PDFMicromachines (Basel)
April 2025
School of Microelectronics, Fudan University, Shanghai 200433, China.
In this study, we propose an optimized shield gate trench 4H-SiC structure with effective gate oxide protection. The proposed device has a split trench with a P+ shield region, and the P+ shield is grounded by the middle deep trench. Our simulation results show that the peak electric field near the gate oxide is almost completely suppressed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physics and Electronic Information, Baicheng Normal University, Jilin, 137000, China.
An innovative GaN trench MOSFET featuring an ultra-low gate-drain charge (Q) is proposed, with its operational mechanisms thoroughly investigated using TCAD simulations. This novel MOSFET design introduces a triple-shield structure (BPSG-MOS) comprising three critical components: (1) a grounded split gate (SG), (2) a P+ shield region (PSR), and (3) a semi-wrapped BP layer that extends the P-shield beneath the gate and along the sidewalls of the trench gate. Both the SG and PSR effectively reduce gate-drain coupling, transforming most of the gate-drain capacitance (C) into a series combination of gate-source capacitance (C) and drain-source capacitance (C).
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China.
Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (mA), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation.
View Article and Find Full Text PDF