Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Clinical values of metagenomic next-generation sequencing (mNGS) in patients with severe pneumonia remain controversial. Therefore, we conduct this meta-analysis to evaluate the diagnostic performance of mNGS for pathogen detection and its role in the prognosis of severe pneumonia.

Methods: We systematically searched the literature published in PubMed, Embase, Cochrane Library, Web of Science, Clinical Trials.gov, CNKI, Wanfang Data, and CBM from the inception to the 28th September 2022. Relevant trials comparing mNGS with conventional methods applied to patients with severe pneumonia were included. The primary outcomes of this study were the pathogen-positive rate, the 28-day mortality, and the 90-day mortality; secondary outcomes included the duration of mechanical ventilation, the length of hospital stay, and the length of stay in the ICU.

Results: Totally, 24 publications with 3220 patients met the inclusion criteria and were enrolled in this study. Compared with conventional methods (45.78%, 705/1540), mNGS (80.48%, 1233/1532) significantly increased the positive rate of pathogen detection [ = 6.81, 95% (4.59, 10.11, < 0.001]. The pooled 28-day and 90-day mortality in mNGS group were 15.08% (38/252) and 22.36% (36/161), respectively, which were significantly lower than those in conventional methods group 33.05% (117/354) [ = 0.35, 95% (0.23, 0.55), < 0.001, = 0%] and 43.43%(109/251) [ = 0.34, 95% (0.21, 0.54), < 0.001]. Meanwhile, adjusted treatment based on the results of mNGS shortened the length of hospital stay [MD = -2.76, 95% (- 3.56, - 1.96), P < 0.001] and the length of stay in ICU [ = -4.11, 95% (- 5.35, - 2.87), < 0.001].

Conclusion: The pathogen detection positive rate of mNGS was much higher than that of conventional methods. Adjusted treatment based on mNGS results can reduce the 28-day and 90-day mortality of patients with severe pneumonia, and shorten the length of hospital and ICU stay. Therefore, mNGS advised to be applied to severe pneumonia patients as early as possible in addition to conventional methods to improve the prognosis and reduce the length of hospital stay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117876PMC
http://dx.doi.org/10.3389/fcimb.2023.1106859DOI Listing

Publication Analysis

Top Keywords

severe pneumonia
20
conventional methods
20
patients severe
16
length hospital
16
pathogen detection
12
90-day mortality
12
hospital stay
12
mngs
9
clinical values
8
values metagenomic
8

Similar Publications

Objectives: The risk of major venous thromboembolism (VTE) among patients with COVID-19 is high but varies with disease severity. Estimate the incidence of lower extremity deep venous thrombosis (DVT) in critically ill hospitalized patients with COVID-19, validate the Wells score for DVT diagnosis, and determine patients' prognosis.

Methods: This was an observational follow-up study in the context of the diagnosis and prognosis of DVT.

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

Diagnostic Challenges of Six-Pathogen Detected by mNGS in an Immunocompromised ICU Patient with Severe Community-Acquired Pneumonia-Induced Sepsis: A Case Report and Literature Review.

Infect Drug Resist

September 2025

Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.

Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.

View Article and Find Full Text PDF

Hypervirulent is a recently identified pathotype characterized by high virulence and rapid dissemination. It is associated with invasive infections at multiple anatomical sites, including liver abscesses, necrotizing fasciitis, meningitis, myositis, and endophthalmitis. It has emerged as a significant threat to public health due to its aggressive clinical course and high mortality rate.

View Article and Find Full Text PDF