Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

[This corrects the article DOI: 10.1021/acsomega.2c03148.].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116511PMC
http://dx.doi.org/10.1021/acsomega.3c01749DOI Listing

Publication Analysis

Top Keywords

correction "adsorption
4
"adsorption methyl
4
methyl orange
4
orange aqueous
4
aqueous solution
4
solution bppo-based
4
bppo-based anion
4
anion exchange
4
exchange membrane"
4
membrane" [this
4

Similar Publications

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Enhanced *COOH Adsorption over Edge-Rich Ni-N Sites for Efficient Acidic CO Electroreduction.

J Am Chem Soc

September 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan 410083, China.

Single-atom Ni catalysts hold great promise for the acidic CO reduction reaction (CORR), owing to their high CO selectivity. However, their performance under industrially relevant high current conditions is limited by the weak interaction between isolated Ni-N sites and *COOH intermediates, restricting efficient CO conversion. Here, we introduced edge-rich Ni-N sites via support vacancy engineering to enhance *COOH adsorption, thereby boosting the CORR activity and selectivity in acidic media.

View Article and Find Full Text PDF

The Martini model is a coarse-grained force field allowing simulations of biomolecular systems as well as a range of materials including different types of nanomaterials of technological interest. Recently, a new version of the force field (version 3) has been released that includes new parameters for lipids, proteins, carbohydrates, and a number of small molecules, but not yet carbon nanomaterials. Here, we present new Martini models for three major types of carbon nanomaterials: fullerene, carbon nanotubes, and graphene.

View Article and Find Full Text PDF

Ion Luminescent Micelles: A Surfactant-Mediated Double-End Signal Amplification Strategy for Portable Detection of Phoxim.

Anal Chem

September 2025

State Key Laboratory of Green Chemical Synthesis and Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.

Residues of organophosphorus pesticides (OPs) raise considerable concern, while achieving high enough detection sensitivity is still a challenge for on-site fluorescence techniques. Herein, we report a "double-end samplification" strategy by encapsulating a low-emission fluorescent ion probe [DCF][P] into a cetyltrimethylammonium bromide (CTAB) hydrophobic core to form ionic luminescent micelles. At the probe end, ionic liquid micelles locally concentrated the probes, achieving a 350-fold fluorescence enhancement.

View Article and Find Full Text PDF

The search for efficient and sustainable materials for solar-driven water splitting has intensified with the emergence of two-dimensional (2D) Janus structures. In this work, we theoretically design and explore two novel Janus monolayers, SGa-PbP and SeGa-PbP, using first-principles calculations. Our results reveal that both monolayers are dynamically, thermally, and mechanically stable, and exhibit direct band gaps (0.

View Article and Find Full Text PDF