98%
921
2 minutes
20
Purpose: This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes.
Methods: IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT.
Results: Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands.
Conclusion: Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120292 | PMC |
http://dx.doi.org/10.1016/j.ctro.2023.100625 | DOI Listing |
J Comput Neurosci
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.
View Article and Find Full Text PDFRadiat Environ Biophys
September 2025
Environmental Physics Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Budapest, Hungary.
Variability in radiation-related health risk and genetic susceptibility to radiation effects within a population is a key issue for radiation protection. Besides differences in the health and biological effects of the same radiation dose, individual variability may also affect dose distribution and its consequences for the same exposure. As exposure to radon progeny affects a large population and has a well-established dose-effect relationship, investigating individual variability upon radon exposure may be particularly important.
View Article and Find Full Text PDFAnesthesiology
October 2025
Department of Anaesthesia and Perioperative Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom; Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom.
The application of cricoid force remains controversial in modern practice. This review critically assesses the anatomic, physiologic, and contemporary clinical evidence of cricoid force application. There may be a sound anatomic basis to cricoid force application, involving occlusion of the postcricoid hypopharynx, but the physiologic basis is uncertain.
View Article and Find Full Text PDFBackground And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDFEquine Vet J
September 2025
Equine Cardioteam Ghent, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Background: Frequent premature atrial complexes (PACs) can increase the risk of atrial fibrillation or atrial tachycardia, and pharmacological therapy can be challenging.
Objective: To report the use of three-dimensional electro-anatomical mapping of PAC originating from the right atrial free wall and treatment by radiofrequency ablation in three horses.
Study Design: Retrospective case report.