98%
921
2 minutes
20
Most existing bioluminescence imaging methods can only visualize the location of engineered bacteria in vivo, generally precluding the imaging of natural bacteria. Herein, we leverage bacteria-specific ATP-binding cassette sugar transporters to internalize luciferase and luciferin by hitchhiking them on the unique carbon source of bacteria. Typically, the synthesized bioluminescent probes are made of glucose polymer (GP), luciferase, Cy5 and ICG-modified silicon nanoparticles and their substrates are made of GP and D-luciferin-modified silicon nanoparticles. Compared with bacteria with mutations in transporters, which hardly internalize the probes in vitro (i.e., ~2% of uptake rate), various bacteria could robustly engulf the probes with a high uptake rate of around 50%. Notably, the developed strategy enables ex vivo bioluminescence imaging of human vitreous containing ten species of pathogens collected from patients with bacterial endophthalmitis. By using this platform, we further differentiate bacterial and non-bacterial nephritis and colitis in mice, while their chemiluminescent counterparts are unable to distinguish them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122673 | PMC |
http://dx.doi.org/10.1038/s41467-023-37827-9 | DOI Listing |
J Virol
September 2025
Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.
Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.
View Article and Find Full Text PDFRSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFEngineered luciferases have transformed biological imaging and sensing, yet optimizing NanoLuc luciferase (NLuc) remains challenging due to the inherent stability-activity trade-off and its limited sequence homology with characterized proteins. We report a hybrid approach that synergistically integrates computational deep learning with structure-guided rational design to develop enhanced NLuc variants that improve thermostability and thereby activity at elevated temperatures. By systematically analyzing libraries of engineered variants, we established that modifications to termini and loops distal from the catalytic center, combined with preservation of allosterically coupled networks, effectively enhance thermal resilience while maintaining enzymatic function.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Introduction: Metabolic differences of normal- and cancer cells represent an important target for the development of novel cancer treatment strategies. Given that radiotherapy constitutes one of the primary treatment modalities for solid cancers, the targeting of cancer cell metabolism to enhance their sensitivity to irradiation emerges as a promising approach. The utilization of glycolysis even under aerobic conditions in cancer cells presents a unique target to deprive cancer cells of energy and metabolites required not only for their rapid cell growth but also for the repair of irradiation induced DNA damage.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Republic of Singapore.
Non-viral gene delivery holds significant promise for the treatment of various diseases. Solid lipid nanoparticles (SLNs) are emerging as promising gene delivery vehicles due to their ease of manufacture and high stability. However, the development of efficient and safe SLNs remains a challenge.
View Article and Find Full Text PDF