98%
921
2 minutes
20
Background: Pretreatment identification of pathological extranodal extension (ENE) would guide therapy de-escalation strategies for in human papillomavirus (HPV)-associated oropharyngeal carcinoma but is diagnostically challenging. ECOG-ACRIN Cancer Research Group E3311 was a multicentre trial wherein patients with HPV-associated oropharyngeal carcinoma were treated surgically and assigned to a pathological risk-based adjuvant strategy of observation, radiation, or concurrent chemoradiation. Despite protocol exclusion of patients with overt radiographic ENE, more than 30% had pathological ENE and required postoperative chemoradiation. We aimed to evaluate a CT-based deep learning algorithm for prediction of ENE in E3311, a diagnostically challenging cohort wherein algorithm use would be impactful in guiding decision-making.
Methods: For this retrospective evaluation of deep learning algorithm performance, we obtained pretreatment CTs and corresponding surgical pathology reports from the multicentre, randomised de-escalation trial E3311. All enrolled patients on E3311 required pretreatment and diagnostic head and neck imaging; patients with radiographically overt ENE were excluded per study protocol. The lymph node with largest short-axis diameter and up to two additional nodes were segmented on each scan and annotated for ENE per pathology reports. Deep learning algorithm performance for ENE prediction was compared with four board-certified head and neck radiologists. The primary endpoint was the area under the curve (AUC) of the receiver operating characteristic.
Findings: From 178 collected scans, 313 nodes were annotated: 71 (23%) with ENE in general, 39 (13%) with ENE larger than 1 mm ENE. The deep learning algorithm AUC for ENE classification was 0·86 (95% CI 0·82-0·90), outperforming all readers (p<0·0001 for each). Among radiologists, there was high variability in specificity (43-86%) and sensitivity (45-96%) with poor inter-reader agreement (κ 0·32). Matching the algorithm specificity to that of the reader with highest AUC (R2, false positive rate 22%) yielded improved sensitivity to 75% (+ 13%). Setting the algorithm false positive rate to 30% yielded 90% sensitivity. The algorithm showed improved performance compared with radiologists for ENE larger than 1 mm (p<0·0001) and in nodes with short-axis diameter 1 cm or larger.
Interpretation: The deep learning algorithm outperformed experts in predicting pathological ENE on a challenging cohort of patients with HPV-associated oropharyngeal carcinoma from a randomised clinical trial. Deep learning algorithms should be evaluated prospectively as a treatment selection tool.
Funding: ECOG-ACRIN Cancer Research Group and the National Cancer Institute of the US National Institutes of Health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245380 | PMC |
http://dx.doi.org/10.1016/S2589-7500(23)00046-8 | DOI Listing |
J Eval Clin Pract
September 2025
Department of Orthopedics and Traumatology, Medical Faculty, University of Health Sciences, Antalya, Turkey.
Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.
Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.
Dermatitis
September 2025
From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Coimbatore, India.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.
Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.
Ren Fail
December 2025
Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.
View Article and Find Full Text PDF