98%
921
2 minutes
20
The efficacy of immune checkpoint therapy is limited by the immunosuppressive tumor microenvironment (TME), and lactate, the most universal component of TME, has been rediscovered that plays important roles in the regulation of metabolic pathways, angiogenesis, and immunosuppression. Here, a therapeutic strategy of acidity modulation combined with programmed death ligand-1 (PD-L1) siRNA (siPD-L1) is proposed to synergistically enhance tumor immunotherapy. The lactate oxidase (LOx) is encapsulated into the hollow Prussian blue (HPB) nanoparticles (NPs) prepared by hydrochloric acid etching followed by the modification with polyethyleneimine (PEI) and polyethylene glycol (PEG) via sulfur bonds (HPB-S-PP@LOx), siPD-L1 is loaded via electrostatic adsorption to obtain HPB-S-PP@LOx/siPD-L1. The obtained co-delivery NPs can accumulate in tumor tissue with stable systemic circulation, and simultaneous release of LOx and siPD-L1 in intracellular high glutathione (GSH) environment after uptake by tumor cells without being destroyed by lysosome. Moreover, LOx can catalyze the decomposition of lactate in the hypoxic tumor tissue with the aid of oxygen release by the HPB-S-PP nano-vector. The results show that the acidic TME regulation via lactate consumption can improve the immunosuppressive TME, including revitalizing the exhausted CD8 T cells and decreasing the proportion of immunosuppressive Tregs, and synergistically elevating the therapeutic effect of PD1/PD-L1 blockade therapy via siPD-L1. This work provides a novel insight for tumor immunotherapy and explores a promising therapy for triple-negative breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2023.213425 | DOI Listing |
EMBO J
September 2025
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Shanxi Normal University, Taiyuan, 030000, PR China.
Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain. Electronic
Pulmonary surfactant protein C (SP-C) may play a key role in alveolar homeostasis by modulating vesicle uptake in alveolar cells. This study explores how SP-C regulates internalization of model unilamellar lipid vesicles by type II alveolar epithelial cells (AECII) and alveolar macrophages (AMϕ), focusing on the effect of lipid composition, palmitoylation state, and interactions with external stimuli like lipopolysaccharides (LPS) or the other hydrophobic surfactant protein SP-B. Using fluorescence-based techniques, we demonstrated that SP-C enhances vesicle uptake in a lipid-dependent manner.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:
The thermosensitive transient receptor potential (Thermo-TRP) channel proteins comprise TRPA1, TRPV1-V4, and TRPM8. TRP channels are mainly situated on cellular surfaces and react to a range of external factors, including heat, cold, acidity, osmotic pressure, chemical signals, and flavors, as well as intracellular signals such as Ca, Na, and cytokines. The thermo-TRP channels are associated with many physiological signal pathways, with their distinct molecular structure making them promising drug targets for respiratory diseases.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDF