98%
921
2 minutes
20
The pantropical fern genus Didymochlaena (Didymochlaenaceae) has long been considered to contain one species only. Recent studies have resolved this genus/family as either sister to the rest of eupolypods I or as the second branching lineage of eupolypods I, and have shown that this genus is not monospecific, but the exact species diversity is unknown. In this study, a new phylogeny is reconstructed based on an expanded taxon sampling and six molecular markers. Our major results include: (i) Didymochlaena is moderately or weakly supported as sister to the rest of eupolypods I, highlighting the difficulty in resolving the relationships of this important fern lineage in the polypods; (ii) species in Didymochlaena are resolved into a New World clade and an Old World clade, and the latter further into an African clade and an Asian-Pacific clade; (iii) an unusual tripling of molecular, morphological and geographical differentiation in Didymochlaena is detected, suggesting single vicariance or dispersal events in individual regions and no evidence for reversals at all, followed by allopatric speciation at more or less homogeneous rates; (iv) evolution of 18 morphological characters is inferred and two morphological synapomorphies defining the family are recognized-the elliptical sori and fewer than 10 sori per pinnule, the latter never having been suggested before; (v) based on morphological and molecular variation, 22 species in the genus are recognized contrasting with earlier estimates of between one and a few; and (vi) our biogeographical analysis suggests an origin for Didymochlaena in the latest Jurassic-earliest Cretaceous and the initial diversification of the extant lineages in the Miocene-all but one species diverged from their sisters within the last 27 Myr, in most cases associated with allopatric speciation owing to geologic and climatic events, or dispersal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cla.12539 | DOI Listing |
Glob Chang Biol
July 2025
Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Climate change poses one of the greatest threats to marine ecosystems worldwide, altering physical, chemical, and biological processes at unprecedented rates. Severe impacts on marine species and habitats have been extensively documented, with shifts in phenology, spatial distribution, and migratory behaviour increasingly pervasive. However, there is a lack of species-specific data examining responses and adaptation to rapid warming and environmental extremes, especially for marine ectotherms.
View Article and Find Full Text PDFInorg Chem
May 2025
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
The mixed chalcogenides LaGa(SSe) form a complete solid solution, with members at increments of = 0.14 prepared as phase-pure samples. Based on their powder X-ray diffraction (XRD) patterns, the cell volume increases with greater Se substitution, but the cell parameters vary in a nonmonotonic way.
View Article and Find Full Text PDFNat Commun
November 2024
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.
The pairing of electrons is ubiquitous in electronic systems featuring attractive inter-electron interactions, as exemplified in superconductors. Counterintuitively, it can also be mediated in certain circumstances by the repulsive Coulomb interaction alone. Quantum Hall (QH) Fabry-Pérot interferometers (FPIs) tailored in a two-dimensional electron gas under a perpendicular magnetic field have been argued to exhibit such an unusual electron pairing, seemingly without attractive interactions.
View Article and Find Full Text PDFAnal Chem
August 2024
State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time.
View Article and Find Full Text PDFGenome Biol Evol
January 2024
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
High-quality genome assemblies across a range of nontraditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here, we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution.
View Article and Find Full Text PDF