Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs. The nanozipper enables real-time imaging of the mobility and dynamic translation of individual viral mRNAs in live cells, providing information on the spatial dynamics and translational elongation rate of viral mRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202217230 | DOI Listing |