98%
921
2 minutes
20
Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115818 | PMC |
http://dx.doi.org/10.1038/s43705-023-00237-5 | DOI Listing |
Environ Monit Assess
September 2025
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.
A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.
View Article and Find Full Text PDFOecologia
September 2025
Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
Understanding changes to local communities brought about by biological invasions is important for conserving biodiversity and maintaining environmental stability. Scale insects (Hemiptera: Coccoidea) are a diverse group of insects well known for their invasion potential and ability to modify local abundance of multiple insect groups. Here, we tested how the presence of crape myrtle bark scale (Acanthococcus lagerstroemiae, CMBS), an invasive felt scale species, seasonally impacted local insect abundance, biodiversity, and community structure on crape myrtle trees.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
Humic acid (HA) and fulvic acid (FA) are the most abundant components of the organic matter in the compost. However, the key chemical structures for the bioactivity of HA/FA and how these structures being affected by composting conditions are not fully understood. The changes in chemical compositions between HA and FA were primarily driven by differences in the contents of carboxyl C, aromatic C, O- alkyl C and C/N ratio.
View Article and Find Full Text PDFFitoterapia
September 2025
African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
Asteriscus graveolens (A. graveolens) belongs to the family Asteraceae. It is native to North Africa and the Asian deserts, with the majority of its distribution in Southwest Algeria and Southeast Morocco.
View Article and Find Full Text PDF