Imaging Radial Distribution Functions of Complex Particles by Relayed Dynamic Nuclear Polarization.

J Am Chem Soc

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The physical properties of many modern multi-component materials are determined by their internal microstructure. Tools capable of characterizing complex nanoscale architectures in composite materials are, therefore, essential to design materials with targeted properties. Depending on the morphology and the composition, structures may be measured by laser diffraction, scattering methods, or by electron microscopy. However, it can be difficult to obtain contrast in materials where all the components are organic, which is typically the case for formulated pharmaceuticals, or multi-domain polymers. In nuclear magnetic resonance (NMR) spectroscopy, chemical shifts allow a clear distinction between organic components and can in principle provide the required chemical contrast. Here, we introduce a method to obtain radial images of the internal structure of multi-component particles from NMR measurements of the relay of nuclear hyperpolarization obtained from dynamic nuclear polarization. The method is demonstrated on two samples of hybrid core-shell particles composed of a core of polystyrene with a shell of mesostructured silica filled with the templating agent CTAB and is shown to yield accurate images of the core-shell structures with a nanometer resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760979PMC
http://dx.doi.org/10.1021/jacs.3c01279DOI Listing

Publication Analysis

Top Keywords

dynamic nuclear
8
nuclear polarization
8
imaging radial
4
radial distribution
4
distribution functions
4
functions complex
4
complex particles
4
particles relayed
4
relayed dynamic
4
nuclear
4

Similar Publications

Temporal transcriptomics reveal crucial networks underlying jasmonate-mediated diurnal floret opening and closure in rice.

Sci China Life Sci

September 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF

X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.

View Article and Find Full Text PDF

Structural basis of adenosine 2A receptor-balanced signaling activation relies on allosterically mediated structural dynamics.

Cell Chem Biol

September 2025

iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio

Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF