98%
921
2 minutes
20
The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the genus, 2% to the P335 group, and 1% to the genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that phages exhibited a very narrow host range, whereas some and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the genus were by far the most dominant. Most phages lysed a small subset of the strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231144 | PMC |
http://dx.doi.org/10.1128/aem.00421-23 | DOI Listing |
Nucleic Acids Res
September 2025
School of Microbiology, University College Cork, Cork, T12 Y337, Ireland.
The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).
View Article and Find Full Text PDFFood Res Int
November 2025
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:
Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.
View Article and Find Full Text PDFNat Microbiol
September 2025
Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
Viral infections are implicated in the pathogenesis of autoimmune diseases, including Sjögren's disease (SjD), but the mechanisms linking viral antigens to disease development remain poorly understood. To address this, we conducted shotgun metagenomic sequencing of saliva samples from 35 patients with SjD and 25 healthy controls. The salivary virome of the patients with SjD, particularly those with high disease activity, had an expansion of Siphoviridae bacteriophages and increased eukaryotic viral sequences, including Vientovirus.
View Article and Find Full Text PDFNat Microbiol
September 2025
The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
Restriction-modification (R-M) systems protect against phage infection by detecting and degrading invading foreign DNA. However, like many prokaryotic anti-phage defences, R-M systems pose a major risk of autoimmunity, exacerbated by the presence of hundreds to thousands of potential cleavage sites in the bacterial genome. Pseudomonas aeruginosa strains experience the temporary inactivation of restriction endonucleases following growth at high temperatures, but the reason and mechanisms for this phenomenon are unknown.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany. Electronic address:
As antibiotic resistance of bacterial pathogens spreads, interest in bacteriophage (phage) therapy has soared again in many countries. Currently, there is no phage therapeutic with marketing approval and phage treatments are relegated to few patients, mostly under compassionate use schemes when approved drugs failed or are unavailable. Commercially manufactured and approved phage preparations could both expand the availability of therapeutic phages for existing, exemptional treatment schemes and result in more broadly usable phage therapeutics with marketing authorization.
View Article and Find Full Text PDF