Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand.

Nat Commun

Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A detailed picture of temperature dependent behavior of CsFAPbI perovskite quantum dots across the composition range is constructed by performing in situ optical spectroscopic and structural measurements, supported by theoretical calculations that focus on the relation between A-site chemical composition and surface ligand binding. The thermal degradation mechanism depends not only on the exact chemical composition, but also on the ligand binding energy. The thermal degradation of Cs-rich perovskite quantum dots is induced by a phase transition from black γ-phase to yellow δ-phase, while FA-rich perovskite quantum dots with higher ligand binding energy directly decompose into PbI. Quantum dot growth to form large bulk size grain is observed for all CsFAPbI perovskite quantum dots at elevated temperatures. In addition, FA-rich quantum dots possess stronger electron-longitudinal optical phonon coupling, suggesting that photogenerated excitons in FA-rich quantum dots have higher probability to be dissociated by phonon scattering compared to Cs-rich quantum dots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113222PMC
http://dx.doi.org/10.1038/s41467-023-37943-6DOI Listing

Publication Analysis

Top Keywords

quantum dots
32
perovskite quantum
20
ligand binding
12
quantum
9
dots
8
surface ligand
8
csfapbi perovskite
8
chemical composition
8
thermal degradation
8
binding energy
8

Similar Publications

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.

View Article and Find Full Text PDF

Boron nitride quantum dots combine several unique properties, including chemical stability, biocompatibility, and low cytotoxicity. These properties and tunable optical characteristics make them promising for use in boron neutron capture therapy simultaneously as therapeutic agents and fluorescent markers for cancer cells. In this paper we present a case study, in which the electronic structure of these dots is analyzed using DFT and TD-DFT methods providing a deeper understanding of their absorption properties.

View Article and Find Full Text PDF