Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Four new hybrid compounds (-) bearing pyrazole ( and ) and chalcone ( and ) fragments were synthesized and characterized. Compounds were assayed for their ability to inhibit the proliferation of human lung (A549) and colon (Caco-2) cancer cell lines. Besides, toxicity against normal cells was determined using the human umbilical vein endothelial cells (HUVEC). molecular docking, molecular dynamics (MD) simulation and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were carried out to predict the binding modes, protein stability, drug-likeness and toxicity of the reported compounds. The anticancer activity of the tested compounds revealed dose-dependent cell-specific cytotoxicity. studies revealed that the compounds have a good binding affinity, possess appropriate drug-likeness properties and have low toxicity profiles.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2199867DOI Listing

Publication Analysis

Top Keywords

anticancer activity
8
molecular docking
8
docking molecular
8
molecular dynamics
8
compounds
5
synthesis anticancer
4
molecular
4
activity molecular
4
dynamics studies
4
studies pyrazole-chalcone
4

Similar Publications

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF