A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Developmental defects and potential mechanisms in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish (Danio rerio). | LitMetric

Developmental defects and potential mechanisms in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish (Danio rerio).

Sci Total Environ

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China. Electronic address:

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a typical triazole fungicide, difenoconazole is extensively used to control plant diseases; however, its residue in environmental waters poses a risk to aquatic organisms. In this study, we investigated the acute toxicity of different life stages and sub-lethal toxicity in embryonic yolk sac stage of difenoconazole to zebrafish, and the developmental toxicity in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish. Furthermore, we used transcriptomics to explore the potential mechanisms of difenoconazole on the F1 larvae of parents exposed to the chemical at the embryonic stage. The results of this study showed that developmental defects were observed in the F1 embryo/larvae of parents exposed to 3, 30, and 300 μg/L of difenoconazole at different (embryo, larval, juvenile, and adult) life stages, and exposure to difenoconazole at the embryonic stage caused more severe developmental toxicity than those at other life stages. Developmental defects (malformation, inhibition of heartbeat and body length) were observed in the F1 embryos and larvae of parents exposed to difenoconazole at the embryonic stage. In addition, the total cholesterol and triglyceride contents were significantly reduced in the F1 larvae, and RNA-seq analysis revealed significant alterations in the expression of nine genes (msmo1, hsd17b7, sc5d, tm7sf2, ebp, cyp2r1, lss, cyp51, and cyp27b1) in the steroid synthesis pathway. This is suggested that F1 larvae of parents exposed to difenoconazole at the embryonic stage show abnormalities in the steroid biosynthetic pathway. These results reveal the differences in toxicity of difenoconazole to zebrafish at different life stages, improve studies on difenoconazole toxicity to zebrafish, and provide a new perspective for assessing the risk of contaminants to aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163529DOI Listing

Publication Analysis

Top Keywords

parents exposed
24
life stages
24
exposed difenoconazole
16
embryonic stage
16
developmental defects
12
larvae parents
12
difenoconazole embryonic
12
difenoconazole
11
potential mechanisms
8
generation parents
8

Similar Publications