Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The American College of Radiology Breast Imaging Reporting and Data System (ACR BI-RADS) used with ultrasonography cannot guide the individual management of solid breast tumors, but preoperative core biopsy categories (CBCs) can. We aimed to use machine learning to analyze clinical and ultrasonic features for predicting CBCs and to aid in the development of a new ultrasound (US) imaging reporting system for solid tumors of the breast.

Methods: This retrospective study included women with solid breast tumors who underwent US-guided core needle biopsy from March 1, 2019, to December 31, 2019. All patients were randomly assigned to a training or validation cohort (7:3 ratio). CBC was predicted using 5 machine learning models: random forest (RF), support vector machine (SVM), k-nearest-neighbor (KNN), multilayer perceptron (MLP), and ridge regression (RR). In the validation cohort, the area under the curve (AUC) and accuracy were ascertained for every algorithm. Based on AUC values, the optimal algorithm was determined, and the features' importance was depicted.

Results: A total of 1,082 female patients were included (age range, 12-96 years; mean age ± standard deviation, 42.22±13.37 years). The proportion of the 4 CBCs was 4% (44/1,185) for the B1 group, 60% (714/1,185) for the B2 group, 5% (57/1,185) for the B3 group, and 31% (370/1,185) for the B5 group. In the validation cohort, AUCs of the optimal algorithm constructed RF were 0.78, 0.88, 0.64, and 0.92 for B1, B2, B3, and B5, respectively, with an accuracy of 0.82.

Conclusions: Machine learning could strongly predict CBC, particularly in B2 and B5 categories of solid breast tumors, with RF being the optimal machine learning model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102795PMC
http://dx.doi.org/10.21037/qims-22-877DOI Listing

Publication Analysis

Top Keywords

machine learning
20
solid breast
16
breast tumors
12
validation cohort
12
preoperative core
8
core biopsy
8
biopsy categories
8
categories solid
8
imaging reporting
8
optimal algorithm
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF