98%
921
2 minutes
20
Phytoremediation is considered an effective technology for remediating antibiotic-contaminated water; however, its underlying mechanisms remain poorly understood. Therefore, this study investigated the phytoremediation potential of fluoroquinolone antibiotics (FQs) by different wetland plant species. The phytoremediation rates of ΣFQs were 46-69 %, and rhizosphere microorganism degradation (accounting for 90-93 %) dominated the FQ removal over that of plant uptake and hydrolysis. Dissipation of the FQs in the hydroponic system followed a first-order kinetic model. The joint action of the more powerful absorptive capacity of plants and stronger microbial degradation ability in the rhizosphere was the reason that Cyperus papyrus showed significantly higher FQ phytoremediation rates than the other three plant species, which implied that the plant species is a critical factor affecting phytoremediation efficiency. The FQ distribution in plant tissues decreased from root > stem > leaf, suggesting that FQs were more concentrated in the roots than in the aboveground tissues. Negative correlations between the diffusive gradient in thin films and root concentrations implied that these wetland plant species took up FQs mainly via active transport mechanism (requiring some vectors, perhaps via exudates); whereas, the process of root-to-stem transfer and upward transport represented passive transport, which mainly depended on transpiration. These results facilitate an improved understanding of phytoremediation processes and improve their future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163464 | DOI Listing |
J Exp Bot
September 2025
Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
September 2025
Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France.
Background: In 2023, Mayotte, a French department in the Mozambique channel, experienced a long drought that led to potable water restrictions. Although the French vaccination schedule makes polio vaccination compulsory for children, the large proportion of migrants on the island coupled with the water crisis raised concerns about the establishment of poliovirus transmission chains. Therefore, a surveillance was implemented to detect polioviruses in sewage sampled in the two main wastewater treatment plants.
View Article and Find Full Text PDFMol Ecol
September 2025
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Determining species boundaries is key for appropriately assessing biodiversity. However, the continuity of the speciation process makes delimiting species a difficult task, especially for recently diverged taxa. Furthermore, past introgression may leave traces that result in reticulate evolutionary patterns, challenging the estimation of species relationships.
View Article and Find Full Text PDFDNA Res
September 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Scienc
Receptor-like kinases (RLKs) play essential roles in plant growth and development. CRINKLY4 (CR4), one of the first reported RLKs in plants, is a well-known regulator of epidermal cell differentiation during leaf and seed development in maize. Within the last four decades, the functional landscape of CR4 has emerged across diverse developmental contexts and species, including dicots (e.
View Article and Find Full Text PDF