98%
921
2 minutes
20
The hybrid vesicle AuNP@LCCV, in which a large number of AuNPs with an average size of about 2.8 nm were densely and uniformly distributed in an isolated state throughout the corona of the unusual polymer vesicle, was prepared reduction of Au ions, which were encapsulated in advance in the unique polymer vesicle (LCCV) consisting of a hydrophobic membrane of poly(2-phenyl-2-oxazoline) and a hydrophilic loop-cluster corona of polyethyleneimine. The vesicle was formed self-assembly from a comb-like block copolymer in which a polystyrenic main chain was grafted densely with diblock polyethyleneimine--poly(2-phenyl-2-oxazoline) and acted as a reactor for the reduction of Au. The hybrid vesicle AuNP@LCCV showed powerful catalytic ability in the reduction of nitrophenols (NPs). Interestingly, the reduction reactions of NPs showed a remarkably long induction time, which could be shortened dramatically from 60 min to 1-2 min by greatly increasing the concentration of NaBH. It is revealed that the oxygen adsorbed on the AuNPs significantly inhibited the reduction, causing the induction time. Once the oxygen is chemically cleaned from the surface of the AuNPs, the reduction of 4-NP proceeds gradually for a while and then completes suddenly. The reduction mechanism accompanying the oxygen-dependent induction time is proposed from the view of the strong oxygen affinity of the catalyst AuNP@LCCV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089077 | PMC |
http://dx.doi.org/10.1039/d2na00893a | DOI Listing |
Carbohydr Polym
November 2025
Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China. Electronic address:
The primary objective of this study was to develop a nanosuspension based on orthoester compounds (OE) and carboxymethyl chitosan (CMCS) for the combined treatment of tumors. Initially, OE was synthesized as a liquid pharmaceutical excipient. Subsequently, nanoparticles were formulated using CMCS and loaded with mitoxantrone (MIT).
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Faculty of Health Sciences, University of Macau, Macau SAR 999999, China.
Breast cancer is a global health challenge necessitating more precise and effective treatment strategies. In this study, we developed a novel drug-loaded therapeutic nanoplatform, OCPdots@CTe, which integrated near-infrared-II (NIR-II) window phototheranostic for targeted treatment of orthotopic breast tumors. The outer membrane vesicles (OMVs) can stimulate more immune responses based on precise targeting, while chelerythrine (CTe) can induce apoptosis by generating reactive oxygen species (ROS), thereby enhancing the therapeutic effect.
View Article and Find Full Text PDFJ Extracell Vesicles
September 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Intervertebral disc degeneration (IVDD) is a common age-related disorder associated with inflammation, pain and impaired mobility. In this study, we developed a therapeutic system using silk fibroin (SF) hydrogel loaded with mRNA-engineered extracellular vesicles derived from murine bone marrow mesenchymal stem cells (BMSCs-EVs) to modulate macrophage polarization and alleviate IVDD. BMSCs were isolated from 6-week-old C57BL/6 mice, and an acute IVDD model was established via 18G needle puncture of the coccygeal discs (Co7-Co10).
View Article and Find Full Text PDFActa Biomater
August 2025
School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW, 2052, Australia. Electronic address:
Breast cancer remains one of the leading causes of cancer-related mortality worldwide, with treatment resistance and recurrence posing significant challenges to conventional therapies such as chemotherapy, surgery, and radiotherapy. Photosensitiser-assisted treatment strategies, particularly photodynamic therapy (PDT), have emerged as a promising alternative for breast cancer due to its targeted nature and minimally invasive approach. This review provides an overview of PDT as a treatment strategy for breast cancer.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Materials Science, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
Synthetic ion channels represent an emerging class of therapeutics. However, most synthetic ion channels are derived from small molecules, whose rapid clearance from the body limits their therapeutic potential. Here, we report macromolecular ion transport systems based on amphiphilic polyether block copolymers.
View Article and Find Full Text PDF