98%
921
2 minutes
20
The stoichiometric compositions of a ferrite system with a chemical formula CoCrDyFeO where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied by the X-ray diffraction (XRD), infra-red spectroscopy (IR), scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. XRD analysis confirmed the cubic spinel structure of the prepared samples without the presence of any impurity and secondary phases. Selected area electron diffraction and IR measurements gives further confirmation to the XRD observations. Considering that strain mechanism, elastic properties and cation distribution play a major role for controlling the magnetic properties and therefore these properties were precisely evaluated through reliable methodologies such as XRD and IR data. The cation distribution was determined by the X-ray diffraction data which are further supported by the magnetization studies. Magnetoelectric properties of CoCrDyFeO + BaTiO have also been investigated. The mechanisms involved are discussed in the manuscript.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097034 | PMC |
http://dx.doi.org/10.3390/nano13071165 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genoa Via Dodecaneso 31 16146 Genova (GE) Italy
Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Nuclear magnetic resonance (NMR) serves as a powerful tool for studying both the structure and dynamics of proteins. The NOE method, alongside residual dipolar; coupling, paramagnetic effects, -coupling, and other related techniques, has reached a level of maturity that allows for the determination of protein structures. Furthermore, NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.
View Article and Find Full Text PDF