Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stoichiometric compositions of a ferrite system with a chemical formula CoCrDyFeO where x = 0.0, 0.025, 0.05, 0.075 and 0.1 were prepared by the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied by the X-ray diffraction (XRD), infra-red spectroscopy (IR), scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. XRD analysis confirmed the cubic spinel structure of the prepared samples without the presence of any impurity and secondary phases. Selected area electron diffraction and IR measurements gives further confirmation to the XRD observations. Considering that strain mechanism, elastic properties and cation distribution play a major role for controlling the magnetic properties and therefore these properties were precisely evaluated through reliable methodologies such as XRD and IR data. The cation distribution was determined by the X-ray diffraction data which are further supported by the magnetization studies. Magnetoelectric properties of CoCrDyFeO + BaTiO have also been investigated. The mechanisms involved are discussed in the manuscript.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097034PMC
http://dx.doi.org/10.3390/nano13071165DOI Listing

Publication Analysis

Top Keywords

magnetic properties
8
x-ray diffraction
8
electron microscopy
8
cation distribution
8
properties
5
thorough investigation
4
investigation rare-earth
4
rare-earth substituted
4
substituted cobalt-chromium
4
cobalt-chromium ferrite
4

Similar Publications

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

Isolation, Purification, and Preparation of Taxinine-Loaded Liposomes for Improved Anti-Hepatocarcinogenic Activity.

Drug Dev Res

September 2025

Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.

Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Measurement of protein non-covalent interactions in buffer and cells.

Magn Reson Lett

May 2025

Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Nuclear magnetic resonance (NMR) serves as a powerful tool for studying both the structure and dynamics of proteins. The NOE method, alongside residual dipolar; coupling, paramagnetic effects, -coupling, and other related techniques, has reached a level of maturity that allows for the determination of protein structures. Furthermore, NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.

View Article and Find Full Text PDF