Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094197PMC
http://dx.doi.org/10.3390/ijms24076368DOI Listing

Publication Analysis

Top Keywords

theoretical insights
4
insights oxidative
4
oxidative degradation
4
degradation biopolymers
4
biopolymers plastics
4
plastics metalloenzymes
4
molecular
4
metalloenzymes molecular
4
molecular modeling
4
modeling techniques
4

Similar Publications

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Theoretical Study of Ru-Catalyzed Decarboxylative Heteroarylation of Aryl Carboxylic Acids.

J Org Chem

September 2025

State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.

View Article and Find Full Text PDF

Z-scheme Heterojunction on TS-1 Zeolite Boosting Ultrafast Visible-Light-Driven Degradation of Cr(VI) and Tetracycline.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.

View Article and Find Full Text PDF

This study investigates the spatial and temporal distribution and the influencing factors of 579 cultural heritage sites along the Qin-Shu Ancient Road in Shaanxi Province, employing kernel density estimation, buffer analysis, and geographic detectors. Three key findings emerge: (1) The spatial pattern is characterized by a "line-belt-core" structure, with a belt-like aggregation along the Xi'an-Baoji-Hanzhong axis. Core concentrations are found in Xi'an (181 sites), Hanzhong (159 sites), and Ankang (122 sites), with secondary concentrations in Baoji (72 sites) and Shangluo (36 sites).

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF