98%
921
2 minutes
20
Lung cancer still has one of the highest morbidity and mortality rates among all types of cancer. Its incidence continues to increase, especially in developing countries. Although the medical field has witnessed the development of targeted therapies, new treatment options need to be developed urgently. For the discovery of new drugs, human cancer models are required to study drug efficiency in a relevant setting. Here, we report the generation of a non-small cell lung cancer model with a perfusion system. The bioprinted model was produced by digital light processing (DLP). This technique has the advantage of including simulated human blood vessels, and its simple assembly and maintenance allow for easy testing of drug candidates. In a proof-of-concept study, we applied gemcitabine and determined the IC values in the 3D models and 2D monolayer cultures and compared the response of the model under static and dynamic cultivation by perfusion. As the drug must penetrate the hydrogel to reach the cells, the IC value was three orders of magnitude higher for bioprinted constructs than for 2D cell cultures. Compared to static cultivation, the viability of cells in the bioprinted 3D model was significantly increased by approximately 60% in the perfusion system. Dynamic cultivation also enhanced the cytotoxicity of the tested drug, and the drug-mediated apoptosis was increased with a fourfold higher fraction of cells with a signal for the apoptosis marker caspase-3 and a sixfold higher fraction of cells positive for PARP-1. Altogether, this easily reproducible cancer model can be used for initial testing of the cytotoxicity of new anticancer substances. For subsequent in-depth characterization of candidate drugs, further improvements will be necessary, such as the generation of a multi-cell type lung cancer model and the lining of vascular structures with endothelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094257 | PMC |
http://dx.doi.org/10.3390/ijms24076071 | DOI Listing |
JCO Precis Oncol
September 2025
Shu-Ning Li, MS, Jun-Nv Xu, MD, PhD,and Nan-Nan Ji, MD, PhD, Department of Radiation Oncology, Cancer Treatment Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, China, Ming Xue, MS, Department of Outpatient, The Second Affiliated Hospital of Hainan Medical University, Hai
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFJCO Precis Oncol
September 2025
Monica F. Chen, MD, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, Daniel Gomez, MD, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, and Helena A. Yu, MD, Division of Solid Tumor Oncology, Depart
J Bras Pneumol
September 2025
. Rede D'Or, São Paulo (SP), Brasil.
J Bras Pneumol
September 2025
. Departamento de Pneumologia, Centro Hospitalar Universitário de São João, Porto, Portugal.
Objectives: The 9th edition of the Tumor, Node, Metastasis (TNM-9) lung cancer classification is set to replace the 8th edition (TNM-8) starting in 2025. Key updates include the splitting of the mediastinal nodal category N2 into single- and multiple-station involvement, as well as the classification of multiple extrathoracic metastatic lesions as involving a single organ system (M1c1) or multiple organ systems (M1c2). This study aimed to assess how the TNM-9 revisions affect the final staging of lung cancer patients and how these changes correlate with overall survival (OS).
View Article and Find Full Text PDF