Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The management of small vessels has always been key to maritime administration. This paper presents a novel method for recognizing small fishing vessels based on laser sensors. Using four types of small fishing vessels as targets, a recognition method for small fishing vessels based on Markov transition field (MTF) time-series images and VGG-16 transfer learning is proposed. In contrast to conventional methods, this study uses polynomial fitting to obtain the contours of a fishing vessel and transforms one-dimensional vessel contours into two-dimensional time-series images using the MTF coding method. The VGG-16 model is used for the recognition process, and migration learning is applied to improve the results. The UCR time-series public dataset is used as a transfer learning dataset for the MTF time-series image encoding. The experiment demonstrates that the proposed method exhibits higher accuracy and performance than 1D-CNN and other general neural network models, and the highest accuracy rate is 98.92%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097870 | PMC |
http://dx.doi.org/10.1038/s41598-023-31319-y | DOI Listing |