98%
921
2 minutes
20
Grain boundaries (GBs) in two-dimensional (2D) materials are known to dramatically impact material properties ranging from the physical, chemical, mechanical, electronic, and optical, to name a few. Predicting a range of physically realistic GB structures for 2D materials is critical to exercising control over their properties. This, however, is nontrivial given the vast structural and configurational (defect) search space between lateral 2D sheets with varying misfits. Here, in a departure from traditional evolutionary search methods, we introduce a workflow that combines the Graph Neural Network (GNN) and an evolutionary algorithm for the discovery and design of novel 2D lateral interfaces. We use a representative 2D material, blue phosphorene (BP), and identify 2D GB structures to test the efficacy of our GNN model. The GNN was trained with a computationally inexpensive machine learning bond order potential (Tersoff formalism) and density functional theory (DFT). Systematic downsampling of the training data sets indicates that our model can predict structural energy under 0.5% mean absolute error with sparse (<2000) DFT generated energy labels for training. We further couple the GNN model with a multiobjective genetic algorithm (MOGA) and demonstrate strong accuracy in the ability of the GNN to predict GBs. Our method is generalizable, is material agnostic, and is anticipated to accelerate the discovery of 2D GB structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141246 | PMC |
http://dx.doi.org/10.1021/acsami.3c01161 | DOI Listing |
Front Hum Neurosci
August 2025
Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.
Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.
Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.
Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.
Proc Mach Learn Res
November 2024
Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.
View Article and Find Full Text PDFNat Biomed Eng
September 2025
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.
View Article and Find Full Text PDFAm J Audiol
September 2025
Department of Special Education and Communication Disorders, University of Nebraska-Lincoln.
Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.
Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.