98%
921
2 minutes
20
The cortical areas involved in human speech should be characterized reliably prior to surgery for brain tumors or drug-resistant epilepsy. The functional mapping of language areas for surgical decision-making is usually done invasively by electrical direct cortical stimulation (DCS), which is used to identify the organization of the crucial cortical and subcortical structures within each patient. Accurate preoperative non-invasive mapping aids surgical planning, reduces time, costs, and risks in the operating room, and provides an alternative for patients not suitable for awake craniotomy. Non-invasive imaging methods like MRI, fMRI, MEG, and PET are currently applied in presurgical design and planning. Although anatomical and functional imaging can identify the brain regions involved in speech, they cannot determine whether these regions are critical for speech. Transcranial magnetic stimulation (TMS) non-invasively excites the cortical neuronal populations by means of electric field induction in the brain. When applied in its repetitive mode (rTMS) to stimulate a speech-related cortical site, it can produce speech-related errors analogous to those induced by intraoperative DCS. rTMS combined with neuronavigation (nrTMS) enables neurosurgeons to preoperatively assess where these errors occur and to plan the DCS and the operation to preserve the language function. A detailed protocol is provided here for non-invasive speech cortical mapping (SCM) using nrTMS. The proposed protocol can be modified to best fit the patient- and site-specific demands. It can also be applied to language cortical network studies in healthy subjects or in patients with diseases that are not amenable to surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64492 | DOI Listing |
Phys Eng Sci Med
September 2025
Laboratório de Biomagnetismo, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
Rev Cardiovasc Med
August 2025
Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
Background: The causal relationship between migraines and patent foramen ovale (PFO) remains controversial, and a major unresolved question is how to define migraines attributable to PFO. Thus, this study aimed to determine if brain lesions could be a potential indicator of PFO-related migraines.
Methods: Consecutive migraine patients from 2017 to 2019 who underwent transthoracic echocardiography or transcranial Doppler examination with an agitated saline contrast injection were assessed for right-to-left shunts.
Neurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFJ Affect Disord
September 2025
Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamil
Electroencephalography (EEG) is a comparatively inexpensive and non-invasive recording technique of neural activity, making it a valuable tool for biomarker discovery in transcranial magnetic stimulation (TMS). This systematic review aimed to examine mechanistic and predictive biomarkers, identified through TMS-EEG or resting-state EEG, of treatment response to TMS in psychiatric and neurocognitive disorders. Nineteen articles were obtained via Embase, APA PsycInfo, MEDLINE, and manual search; conditions included, unipolar depression (k = 13), Alzheimer's disease (k = 3), bipolar depression (k = 2), and schizophrenia (k = 2).
View Article and Find Full Text PDFNeurosci Lett
September 2025
Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea
Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.
View Article and Find Full Text PDF