Potential of utilizing pathogen-derived mycotoxins as alternatives to synthetic herbicides in controlling the noxious invasive plant Xanthium italicum.

Pest Manag Sci

State Key Laboratory of Desert and Oasis Ecology, National Key Laboratory of Ecological Security and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discovery of environmentally friendly agents for controlling alien invasive species (AIS) is challenging and in urgent need as their expansion continues to increase. Xanthium italicum is a notorious invasive weed that has caused serious ecological and economic impacts worldwide. For the purpose of exploring the possibility of utilizing herbicidal mycotoxins to control this species, three compounds, a new compound, curvularioxide (1), a new naturally occurring compound, dehydroradicinin (2), and a known compound, radicinin (3), were isolated via activity-guided fractionation from the secondary metabolites of the pathogenic Curvularia inaequalis, which was found to infect X. italicum in natural habitats. All isolated compounds exhibited potent herbicidal activity on receiver species. It is noteworthy to mention that their effects on X. italicum in our bioassays were equivalent to the commercial herbicide glyphosate. Subsequent morphological analysis revealed that application of radicinin (3) severely hindered X. italicum seedlings' hypocotyl and root development. Malondialdehyde content and the activity of catalase and peroxidase of the seedlings were also significantly different from the control, implying the occurrence of induced oxidative stress. Our results suggest that pathogens infecting invasive plants might be valuable resources for developing safer herbicides for controlling weeds. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7499DOI Listing

Publication Analysis

Top Keywords

herbicides controlling
8
xanthium italicum
8
italicum
5
potential utilizing
4
utilizing pathogen-derived
4
pathogen-derived mycotoxins
4
mycotoxins alternatives
4
alternatives synthetic
4
synthetic herbicides
4
controlling noxious
4

Similar Publications

Flumioxazin-based herbicides are frequently used in agriculture to control broadleaf weeds attributed to their high efficacy, rapid action, and residual soil activity, making these compounds a preferred choice over other herbicides in pre-emergence weed control. Due to their beneficial properties, use of these herbicides has significantly increased in recent years, raising concerns regarding potential environmental risks. This study aimed to examine the effects of a commercial flumioxazin-based formulation on different plant models.

View Article and Find Full Text PDF

Background: Herbicide resistance evolution is a major challenge in agriculture. Poa annua L., a globally distributed and genetically diverse weed, has repeatedly evolved resistance to multiple herbicide sites of action due to its genetic plasticity and rapid life cycle.

View Article and Find Full Text PDF

Non-target metabolomic approach of the toxic effects of glyphosate in zebrafish (D. rerio).

Environ Res

September 2025

Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:

Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.

View Article and Find Full Text PDF

l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.

View Article and Find Full Text PDF

Previous work has shown that nanoencapsulation of atrazine enhances the herbicidal action of this active ingredient. This increased activity is expected to control weeds and not compromise the tolerance of maize plants to the herbicide. This study aimed to evaluate the tolerance of maize plants to atrazine in postemergence application with different nanoformulations.

View Article and Find Full Text PDF