Severity: Warning
Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied
Filename: drivers/Session_files_driver.php
Line Number: 365
Backtrace:
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a critical enzyme of ATRA degradation, on the BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs), and unveiled possible mechanism through which BMP9 regulates the expression of Cyp26b1.
Methods: ATRA content was detected with ELISA and HPLC-MS/MS. PCR, Western blot, and histochemical staining were used to assay the osteogenic markers. Fetal limbs culture, cranial defect repair model, and micro-computed tomographic were used to evaluate the quality of bone formation. IP and ChIP assay were used to explore possible mechanism.
Results: We found that the protein level of Cyp26b1 was increased with age, whereas the ATRA content decreased. The osteogenic markers induced by BMP9 were increased by inhibiting or silencing Cyp26b1 but reduced by exogenous Cyp26b1. The BMP9-induced bone formation was enhanced by inhibiting Cyp26b1. The cranial defect repair was promoted by BMP9, which was strengthened by silencing Cyp26b1 and reduced by exogenous Cyp26b1. Mechanically, Cyp26b1 was reduced by BMP9, which was enhanced by activating Wnt/β-catenin, and reduced by inhibiting this pathway. β-catenin interacts with Smad1/5/9, and both were recruited at the promoter of Cyp26b1.
Conclusions: Our findings suggested the BMP9-induced osteoblastic differentiation was mediated by activating retinoic acid signalling, viadown-regulating Cyp26b1. Meanwhile, Cyp26b1 may be a novel potential therapeutic target for the treatment of bone-related diseases or accelerating bone-tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352185 | PMC |
http://dx.doi.org/10.1007/s13770-023-00526-z | DOI Listing |
BMC Genomics
July 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
Background: Induced molt is an effective measure to reduce the introduction cost, cope with the continuous rise of feed cost, and realize the prolonged rearing of laying hens as well. Vitamins are beneficial to the antioxidant capacity and reproductive performance of laying hens, however, studies on vitamin metabolism during fasting are rarely reported.
Results: We analyzed the association between cecal metabolome and liver transcriptome of laying hens during molt.
Int J Mol Sci
April 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant that resists biological degradation and accumulates in organisms. It disrupts zebrafish embryo development, affecting their heartbeat rate and locomotion. Meanwhile, probiotics are known to enhance the development and ossification of zebrafish embryos.
View Article and Find Full Text PDFFunct Integr Genomics
March 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Postnatal gonadal development is regulated by photoperiod via the hypothalamus, especially in seasonal breeding small rodents. However, the precise molecular mechanisms remain unclear. In this study, we conducted a comparative analysis of the transcriptomes of the hypothalamus and testes in 10-week-old male Brandt's voles born under long (LP, 16L:8D) and short photoperiod (SP, 8L:16D) conditions.
View Article and Find Full Text PDFAntioxid Redox Signal
May 2025
Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China.
Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO in the development of TAD remains unclear.
View Article and Find Full Text PDFAnticancer Res
October 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
Background/aim: Retinoic acid (RA) induces tumor cell differentiation in diseases like acute promyelocytic leukemia or high-risk neuroblastoma. However, the formation of resistant cells, which results from dysregulation of different signaling pathways, limits therapy success. The present study aimed to characterize basic regulatory processes induced by the application of RA in human neuroblastoma cells, to identify therapeutic targets independent of the often amplified oncogene MYCN.
View Article and Find Full Text PDF