98%
921
2 minutes
20
Maintaining a steady affinity between gallium-based liquid metals (LM) and polymer binders, particularly under continuous mechanical deformation, such as extrusion-based 3D printing or plating/stripping of Zinc ion (Zn ), is very challenging. Here, an LM-initialized polyacrylamide-hemicellulose/EGaIn microdroplets hydrogel is used as a multifunctional ink to 3D-print self-standing scaffolds and anode hosts for Zn-ion batteries. The LM microdroplets initiate acrylamide polymerization without additional initiators and cross-linkers, forming a double-covalent hydrogen-bonded network. The hydrogel acts as a framework for stress dissipation, enabling recovery from structural damage due to the cyclic plating/stripping of Zn . The LM-microdroplet-initialized polymerization with hemicelluloses can facilitate the production of 3D printable inks for energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202300109 | DOI Listing |
Discov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDFACS Electrochem
September 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.
View Article and Find Full Text PDFACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDF