98%
921
2 minutes
20
Purpose: Five times sit-to-stand (STS) test is commonly used as a clinical assessment of lower-extremity functional ability, but its association with free-living performance has not been studied. Therefore, we investigated the association between laboratory-based STS capacity and free-living STS performance using accelerometry. The results were stratified according to age and functional ability groups.
Methods: This cross-sectional study included 497 participants (63% women) 60-90 yr old from three independent studies. A thigh-worn triaxial accelerometer was used to estimate angular velocity in maximal laboratory-based STS capacity and in free-living STS transitions over 3-7 d of continuous monitoring. Functional ability was assessed with short physical performance battery.
Results: Laboratory-based STS capacity was moderately associated with the free-living mean and maximal STS performance ( r = 0.52-0.65, P < 0.01). Angular velocity was lower in older compared with younger and in low- versus high-functioning groups, in both capacity and free-living STS variables (all P < 0.05). Overall, angular velocity was higher in capacity compared with free-living STS performance. The STS reserve (test capacity - free-living maximal performance) was larger in younger and in high-functioning groups compared with older and low-functioning groups (all P < 0.05).
Conclusions: Laboratory-based STS capacity and free-living performance were found to be associated. However, capacity and performance are not interchangeable but rather provide complementary information. Older and low-functioning individuals seemed to perform free-living STS movements at a higher percentage of their maximal capacity compared with younger and high-functioning individuals. Therefore, we postulate that low capacity may limit free-living performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417230 | PMC |
http://dx.doi.org/10.1249/MSS.0000000000003178 | DOI Listing |
Crit Rev Microbiol
September 2025
Department of Pure and Applied Chemistry, Centre for Molecular Nanometrology, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK.
Biofilms are microbial communities that adhere to surfaces and each other, encapsulated in a protective extracellular matrix. These structures enhance resistance to antimicrobials, contributing to 65-80% of human infections. The transition from free-living cells to structured biofilms involves a myriad of molecular and structural adaptations.
View Article and Find Full Text PDFISME J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
Mutualistic endosymbiosis is a cornerstone of evolutionary innovation, enabling organisms to exploit diverse niches unavailable to individual species. However, our knowledge about the early evolutionary stage of this relationship remains limited. The association between the ciliate Tetrahymena utriculariae and its algal endosymbiont Micractinium tetrahymenae indicates an incipient stage of photoendosymbiosis.
View Article and Find Full Text PDFMicroorganisms
August 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this region remains insufficiently understood. We aimed to investigate the temperature-driven adaptability regulation of the symbiotic Symbiodiniaceae community in reef-building corals, focusing on the environmental adaptive changes in its community structure in coral reefs between cold (23.
View Article and Find Full Text PDFPhysiol Rep
August 2025
Department of Kinesiology, Institute for Applied Life Sciences, Amherst, Massachusetts, USA.
Skeletal muscle's capacity for oxidative energy production can be measured in vivo by phosphocreatine (PCr) recovery following maximal contractions inside a magnetic resonance scanner. However, muscle energetic characteristics during submaximal contractions of similar intensity as used in free-living activities may be more relevant to the energetic support of ambulatory tasks during daily life. We measured vastus lateralis muscle oxidative capacity, acidification, submaximal oxidative energy production, and acetylcarnitine accumulation in response to an incremental contraction protocol (6%-15% maximal torque).
View Article and Find Full Text PDFBMC Genomics
August 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
Background: The Trebouxiophyceae is a diverse and species-rich class within the Chlorophyta, exhibiting a wide array of lineages and remarkable variations in morphology and ecology. This group encompasses various lifestyles, including photobionts in symbiotic relationships, free-living forms, and parasitic heterotrophs lacking photosynthetic capacity. Trebouxiophycean algae have attracted considerable scientific interest due to their fundamental biological significance and their promising applications in biotechnology.
View Article and Find Full Text PDF