Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate a method to compute the dielectric spectra of fluids in molecular dynamics (MD) by directly applying electric fields to the simulation. We obtain spectra from MD simulations with low magnitude electric fields (≈0.01 V/Å) in agreement with spectra from the fluctuation-dissipation method for water and acetonitrile. We examine this method's trade-off between noise at low field magnitudes and the nonlinearity of the response at higher field magnitudes. We then apply the Booth equation to describe the nonlinear response of both fluids at low frequency (0.1 GHz) and high field magnitude (up to 0.5 V/Å). We develop a model of the frequency-dependent nonlinear response by combining the Booth description of the static nonlinear dielectric response of fluids with the frequency-dependent linear dielectric response of the Debye model. We find good agreement between our model and the MD simulations of the nonlinear dielectric response for both acetonitrile and water.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0143425DOI Listing

Publication Analysis

Top Keywords

dielectric response
16
nonlinear dielectric
12
dielectric spectra
8
electric fields
8
field magnitudes
8
nonlinear response
8
response fluids
8
response
7
nonlinear
5
dielectric
5

Similar Publications

Design and Fabrication of Microsphere-Based Micro/Nano Structures for Efficient Electromagnetic Modulation and Absorption.

Small

September 2025

Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Coatings for Advanced Equipment College of Smart Materials and Future Energy, Fudan University, Shanghai, 200438, P. R. China.

The development of high-performance electromagnetic (EM) absorption materials is pivotal in addressing EM pollution. Such absorption materials enable flexible modulation of EM performance, which has become an important focal point of recent research. Among various EM absorption materials, microsphere-based micro/nano materials exhibit extremely high stability and remarkable attributes for modulating their EM performance.

View Article and Find Full Text PDF

In this paper, we design and study a temperature-controlled switchable terahertz perfect absorber based on vanadium dioxide (VO), which shows excellent multi-band performance, high sensitivity and intelligent thermal management. The device consists of four layers in a metal-dielectric composite structure, which are a metal reflection layer, silicon dielectric layer, VO phase change layer and top metal pattern layer from bottom to top. The simulation results show that when VO is in the low-temperature insulation state, the absorption rate of the device is as high as 99.

View Article and Find Full Text PDF

Charge Transport, Dielectric Response, and Magnetoconductance in Organic Diodes Based on a Novel P18‑8 Conjugated Polymer for Magnetic Sensor Applications.

ACS Omega

August 2025

Laboratoire Matériaux Avancés et Phénomènes Quantiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia.

This paper reports the use of P18-8, a novel conjugated polymer combining poly-(1,4-phenylene-ethynylene) and poly-(1,4-phenylene-vinylene), in the fabrication of an organic diode with the structure ITO/PEDOT:PSS/P18-8/LiF/Al. The electrical properties of the fabricated device were characterized using impedance spectroscopy across a frequency range of 100 Hz to 1 MHz at various applied voltages. The current density-voltage (-) characteristic exhibited ohmic behavior at low applied voltages, while at higher voltages, it conformed to the space charge limited current (SCLC) theory.

View Article and Find Full Text PDF

We propose a dynamically tunable and angle-robust mid-infrared (mid-IR) absorber based on a hybrid metastructure composed of a top-layer Ge grating, an ultrathin SrTiO polar dielectric layer, a thermochromic VO film, and a metallic substrate. The optical response of the system is modeled using rigorous coupled-wave analysis (RCWA), revealing broadband and high-efficiency absorption across a wide range of incident angles (0°-80°) under transverse-magnetic (TM) polarization. The absorption behavior is governed by the interplay of multiple resonant mechanisms, including guided-mode resonance (GMR) in the Ge grating, phonon-polariton (PhP) excitation in the SrTiO layer, and cavity-like modes facilitated by the insulating VO.

View Article and Find Full Text PDF

In condensed matter Physics, massive longitudinal Higgs modes emerge from fluctuations of the order parameter amplitude. A few years ago, the Higgs mode was caught experimentally in the vicinity of an insulator-to-superconductor quantum phase transition [Nat. Phys.

View Article and Find Full Text PDF