Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Trace organic compounds from effluent streams are not completely removed by conventional purification techniques and hence, contaminating groundwater sources. Herein, we report the removal efficiency and rejection mechanisms of three common pharmaceutically active compounds (PhACs); caffeine (CFN), omeprazole (OMZ), and sulfamethoxazole (SMX), using commercial nanofiltration (NF) and reverse osmosis (RO) membranes with different surface characteristics. The RO membranes showed near-complete removal of all PhACs with rejection rates >99%. On the other hand, retention capabilities for the NF membranes varied and were influenced by the characteristics of the PhACs, membranes, and the feed solution. In general, during long-term testing, the rejection did not show much variation and followed a trend compatible with the size exclusion (steric hindrance) mechanism. When a real matrix was used, the rejection of CFN by the more tight NF membranes, HL TFC and NFW decreased by ∼10%, whereas the removal of SMX by the loose NF membrane, XN45, increased by the same ratio. In short-term testing, the rejection of negatively charged SMX increased significantly (∼20-40%) at a higher pH of ∼8 and in the presence of salts. Fouling by the PhACs was more severe on the high-flux NF membranes, HL TFC and XN45, as witnessed by the significant change in Contact angle (CA) values (∼25-50°) as well as the flux decline (∼15%) during long-term testing. To summarize, the removal of PhACs by membranes is a complex phenomenon and depends upon a combination of several factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.117682DOI Listing

Publication Analysis

Top Keywords

pharmaceutically active
8
active compounds
8
nanofiltration reverse
8
reverse osmosis
8
membranes
8
osmosis membranes
8
rejection mechanisms
8
removal phacs
8
phacs membranes
8
long-term testing
8

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.

View Article and Find Full Text PDF

Three new steroidal saponins, kingianoside L-N (1-3), whose structures were elucidated through comprehensive spectroscopic analysis, and 15 known compounds (4-18) were isolated from Polygonatum kingianum var. grandifolium, a source of the traditional antihyperglycemic medicine Polygonati rhizome. The effects of compounds 1-13 on α-glucosidase activity were evaluated in vitro.

View Article and Find Full Text PDF