Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spontaneous combustion gangue hill has attracted great attention due to serious environmental pollution and terrible geological disasters. However, the rich thermal resources inside are often ignored. In order to control the spontaneous combustion of gangue hill and utilize the internal waste heat resources, this project studied the combined treatment effect of 821 gravity heat pipes, laid 47 sets of temperature monitoring devices, evaluated the storage of waste heat resources, and proposed different waste heat utilization methods. The results show that (1) the positions of spontaneous combustion are all located on the windward slope. The highest temperature is in the range of 6 ~ 12 m underground, exceeding 700 ℃. (2) The single-tube experiment of gravity heat pipe shows that the effective temperature control radius is 2 m. The cooling effect is obvious in the range of 3 ~ 5 m underground. However, the temperature rises at the depth of 1 m underground. (3) After 90 days of treatment of the gravity heat pipe group, the temperature at the depths of 3 m, 4 m, 5 m, and 6 m in the high-temperature zone dropped by 56 ℃, 66 ℃, 63 ℃, and 42 ℃, respectively. The maximum temperature drop exceeds 160 ℃. The average temperature drop in the middle- and low-temperature areas is between 9 and 21 °C. (4) The concentration of harmful gases (CO, SO, and HS) decreases by more than 90%. The hazard level is greatly reduced. (5) The amount of waste heat resources contained within 10 m of the spontaneous combustion gangue hill is 7.83E13J. Waste heat resources can be used for indoor heating and greenhouse cultivation. And, under the temperature difference of 50 °C, 100 °C, and 150 °C, the electric energy generated by the heat through the thermoelectric conversion device in the high-temperature zone of the gangue hill is 4056.8 kWh, 7468.2 kWh, and 10,603 kWh, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26713-yDOI Listing

Publication Analysis

Top Keywords

waste heat
24
spontaneous combustion
20
gangue hill
20
combustion gangue
16
gravity heat
16
heat resources
16
heat pipe
12
℃ ℃
12
heat
11
pipe group
8

Similar Publications

With the rapid development of precision medicine and the continuous evolution of smart wearable devices, photothermal materials (PTMs) are experiencing a tremendous opportunity for growth. PTMs can efficiently convert light energy into heat to achieve localized thermal therapy for specific cells or tissues, offering advantages of minimal invasiveness, high selectivity, and precise targeting. Furthermore, PTMs can serve as molecular imaging probes and smart drug carriers, integrating multiple functions such as bioimaging and drug delivery to realize the visualization and controlled release of therapeutic processes.

View Article and Find Full Text PDF

To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.

View Article and Find Full Text PDF

The huge volume waste of the produced water (PW) associated with petroleum extraction poses significant hazards to the surrounded environment due to its complex composition and the presence of various hazardous pollutants, including organic, inorganic, biological contaminants, and natural occurring radioactive materials (NORM). This study was conducted to investigate the factors affecting the removal of the long-lived radium isotopes, i.e.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF

The use of highly flammable materials such as foams, resins, and plastics has led to an increase in the frequency and severity of urban fires worldwide. To address this issue, this study developed a high-specific-surface-area mesoporous metal-organic framework (Fe-MOFs) with heat trapping and smoke adsorption. The Fe-MOFs, zinc tailings (ZTs), piperazine pyrophosphate (PAPP), and sodium lignosulfonate (LS) were used to modify rigid polyurethane foam (RPUF).

View Article and Find Full Text PDF