98%
921
2 minutes
20
Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N -fixing (diazotrophic) and CH -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH , CO ) and nitrogen (NH -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO . Under ambient CO , warming increased plant-available NH -N in surface peat, excess N accumulated in Sphagnum tissue, and N fixation activity decreased. Elevated CO offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16651 | DOI Listing |
Fungal Biol
October 2025
HUN-REN-SZE PhatoPlant-Lab, Széchenyi István University, Mosonmagyaróvár, 9200, Hungary. Electronic address:
Round-leaved sundew (Drosera rotundifolia L.) is a protected glacial relict plant inhabiting Sphagnum bogs, which are endangered habitats in Hungary. In 2020 and 2021 greyish mycelium growth was observed on the hibernacula of D.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, China. Electronic address:
Ultraviolet (UV) radiation-induced photodamage remains a critical dermatological challenge, necessitating natural alternatives to synthetic photo-protectants. This study aimed to evaluate the anti-photodamage potential of fermented Sphagnum moss filtrate (SMFF) through integrated metabolomic, cellular and in vivo analyses. Untargeted metabolomics identified 933 metabolites, with fermentation significantly enriching taurine, glycine derivatives and phenolic acids while activating glycine/serine and taurine/hypotaurine metabolic pathways critical for redox homeostasis.
View Article and Find Full Text PDFCurr Biol
September 2025
Oosterland, Netherlands.
Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.
View Article and Find Full Text PDFNew Phytol
September 2025
School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland.
The impacts of drying on bryospheric photosynthesis are poorly understood. Utilising a 20-yr-long experiment, we quantified the effects of long-term water level drawdown (WLD) on links between bryospheric photosynthesis, microbial community composition, decomposition, and environmental variables. The community structure of photoautotrophic microbes was investigated using metabarcoding and quantitative polymerase chain reaction.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Institute of Engineering and Management, University of Engineering and Management, Kolkata, India.
Peat moss (Sphagnum) plays a crucial role in extenuating the environmental toxicity by swaying the microbial activity and acting as a natural filter for removing pollutants. The peatlands help in the purification of water by filtering out the contaminants and decomposing organic matter by creating anaerobic conditions that create impacts on microbial communities. Additionally, Sphagnum pays for carbon sequestration that makes a positive impact in the carbon sinks process for peatlands.
View Article and Find Full Text PDF