A new apparatus and the relevant method to retrieve IR spectra of solutes from the corresponding aqueous solutions.

Spectrochim Acta A Mol Biomol Spectrosc

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China. Electronic address:

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122598DOI Listing

Publication Analysis

Top Keywords

spectra solutes
12
aqueous solution
12
apparatus relevant
8
solutes corresponding
8
corresponding aqueous
8
aqueous solutions
8
relevant approach
8
obtaining spectra
8
gaseous water
8
spectra
7

Similar Publications

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

Exploring the Fragmentation of Sodiated Species Involving Covalent-Bond Cleavages for Metabolite Characterization.

Rapid Commun Mass Spectrom

September 2025

Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif sur Yvette, France.

Rationale: Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.

Methods: Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis.

View Article and Find Full Text PDF

Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.

View Article and Find Full Text PDF

In this study, we describe the synthesis and characterization of the mononuclear complexes [ )], [ ], and [ ], where = (2-((2-hydroxybenzylidene)-amino)-phenol). The structural analysis of these complexes was carried out utilizing mass spectrometry, H NMR, C NMR, P NMR, UV-visible, and FT-IR. All three complexes were investigated as corrosion inhibitors for mild steel in 1 M HCl.

View Article and Find Full Text PDF

We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.

View Article and Find Full Text PDF