Article Synopsis

  • Helicopter pilots need to ensure their helicopter has enough lift to land safely on a moving ship deck, leading to a study on deck-landing-ability, which assesses landing feasibility based on lift and deck movement.
  • Two groups of participants without piloting experience used a laptop simulator to land either a low-lifter or heavy-lifter helicopter, deciding to land or abort based on the visual information provided about landing conditions.
  • A visual aid was created to help participants understand the safety of their landing attempts, allowing them to differentiate between safe and unsafe landing opportunities and identify the best time to initiate the landing process.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When attempting to land on a ship deck tossed by the sea, helicopter pilots must make sure that the helicopter can develop sufficient lift to be able to safely touchdown. This reminder of affordance theory led us to model and study the affordance of deck-landing-ability, which defines whether it is possible to land safely on a ship deck depending on the helicopter's available lift and the ship's deck heave movements. Two groups of participants with no piloting experience using a laptop helicopter simulator attempted to land either a low-lifter or a heavy-lifter helicopter on a virtual ship deck by either triggering a pre-programmed lift serving as the descent law if it was deemed possible to land, or aborting the deck-landing maneuver. The deck-landing-ability was manipulated by varying the helicopter's initial altitude and the ship's heave phase between trials. We designed a visual augmentation making visible the deck-landing-ability, and thus enabling participants to maximize the safety of their deck-landing attempts and reduce the number of unsafe deck-landing. The visual augmentation presented here was perceived by participants as a means of facilitating this decision-making process. The benefits were found to have originated from the clear-cut distinction it helped them to make between safe and unsafe deck-landing windows and the display of the optimal time for initiating the landing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052284PMC
http://dx.doi.org/10.1038/s41598-022-26770-2DOI Listing

Publication Analysis

Top Keywords

visual augmentation
12
ship deck
12
unsafe deck-landing
8
helicopter
5
deck-landing-ability
4
augmentation deck-landing-ability
4
deck-landing-ability improves
4
improves helicopter
4
ship
4
helicopter ship
4

Similar Publications

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Non-intrusive neuroimaging technology offers fast and robust diagnostic tools for neuro-disorder disease diagnosis, such as Attention-Deficit/Hyperactivity Disorder (ADHD). Resting-state functional magnetic imaging (rs-fMRI) has been demonstrated to have great potential for such applications due to its unique capability and convenience in providing spatial-temporal brain imaging. One critical challenge of using rs-fMRI data is the high dimensionality for both spatial and temporal domains.

View Article and Find Full Text PDF

Introduction/objectives: Irreparable subscapularis tears can cause severe functional impairment and present significant clinical challenges. Current treatment options include tendon transfers (TTs), anterior capsular reconstruction, and reverse shoulder arthroplasty. Each approach has distinct biomechanical advantages and limitations, but there remains no consensus regarding the optimal treatment.

View Article and Find Full Text PDF

---Pars plana vitrectomy in congenital X-linked retinoschisis: a scoping review.

Graefes Arch Clin Exp Ophthalmol

September 2025

Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Road, NE, Suite 2400, Atlanta, GA, 30322, USA.

Purpose: Congenital X-linked retinoschisis (XLRS) has limited treatment options. Gene augmentation via pars plana vitrectomy (PPV) and subretinal RS1 gene delivery is promising, yet it is unclear how PPV may impact outcomes. We explored literature to better understand PPV outcomes in XLRS.

View Article and Find Full Text PDF