Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cesium copper halide perovskite is one of the promising materials for solar-blind light detection. However, most of the cesium copper halide perovskite-based photodetectors (PDs) are focused on ultraviolet A detection and realized on the rigid substrate in the single device configuration. Here, a flexible solar-blind PDs array (10 × 10 pixels) based on the CsCu I film patterns for ultraweak light sensing and light distribution imaging is reported. Large-scale CsCu I film arrays are synthesized with various shapes and uniform dimensions through a simple vacuum-heating-assisted solution method. Benefiting from excellent air stability and superior resistance to the photodegrading of the CsCu I film, the array device exhibits long-term stable photoswitching behavior for 8 h and ultralow light detection capability to resolve the light intensity of 6.1 nW cm with a high responsivity of 62 A W , and the array device can acquire clear images of "G", "X", and "U" showing the input light distribution. Moreover, the flame detection and warning system based on a curved solar-blind PDs array is demonstrated, which can be used for multi-flame monitoring and locating. These results can encourage potential applications of the CsCu I film-based PDs array in the field of optical communication and environment monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202300364 | DOI Listing |