Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in cause a spectrum of glomerular disorders, including thin basement membrane nephropathy (TBMN) and Alport syndrome (AS). The wide application of next-generation sequencing (NGS) in the last few years has revealed that mutations in these genes are not limited to these clinical entities. In this study, 176 individuals with a clinical diagnosis of inherited kidney disorders underwent an NGS-based analysis to address the underlying cause; those who changed or perfected the clinical diagnosis after molecular analysis were selected. In 5 out of 83 individuals reaching a molecular diagnosis, the genetic result was unexpected: three individuals showed mutations in collagen type IV genes. These patients showed the following clinical pictures: (1) familial focal segmental glomerulosclerosis; (2) end-stage renal disease (ESRD) diagnosed incidentally in a 49-year-old man, with diffuse cortical calcifications on renal imaging; and (3) dysmorphic and asymmetric kidneys with multiple cysts and signs of tubule-interstitial defects. Genetic analysis revealed rare heterozygote/compound heterozygote variants. Our study highlights the key role of NGS in the diagnosis of inherited renal disorders and shows the phenotype variability in patients carrying mutations in collagen type IV genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048128PMC
http://dx.doi.org/10.3390/genes14030764DOI Listing

Publication Analysis

Top Keywords

collagen type
12
next-generation sequencing
8
sequencing ngs
8
clinical diagnosis
8
diagnosis inherited
8
mutations collagen
8
type genes
8
analysis
4
ngs analysis
4
analysis illustrates
4

Similar Publications

The Atlas of the Shell Proteome in Oysters Reveals the Potential Roles of the Cytoskeleton and Extracellular Matrix in Biomineralization.

J Proteome Res

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Shell matrix proteins (SMPs) are fundamental biological macromolecules for mollusk shell formation, yet fewer than 400 SMPs in mollusks have been previously identified, hindering our understanding of how mollusks construct and maintain their shells. Here, we identified 1689 SMPs in the Pacific oyster using three different mass spectrometry techniques, representing a significant methodological advancement in shell proteomics, enabling a 6.52-fold increase in SMP identification compared to previous studies.

View Article and Find Full Text PDF

Unopposed platelet activation can be associated with pathologic thrombosis. An intact growth arrest-specific gene 6 (GAS6)/Mer receptor tyrosine kinase (MERTK) signaling pathway contributes importantly to potentiating platelet activation triggered by molecular agonists ex vivo and thrombus stabilization in vivo. We describe, herein, the inhibition of platelet function and stable thrombus formation conferred by iMer, a naturally occurring MERTK splice variant, that acts as a GAS6 decoy receptor and decreases phosphorylation of MERTK.

View Article and Find Full Text PDF

The calipash, a collagen-rich tissue in , undergoes structural degradation during infection, compromising its economic value. This study investigates the underlying collagen alterations. Turtles were challenged with , and samples were collected at 0 h, 6 h, 1d, 3d, 6d, and 10d post-infection.

View Article and Find Full Text PDF

Unlabelled: Colon cancer accounts for the second leading cause of cancer-associated death worldwide. Since the metastasis contributes to its malignancy, targeting the extracellular matrix (ECM) remodeling is critical for its therapy. Most research had focused on the native form of the structural ECM proteins, termed core matrisomes, to find out the relationship of the TME to colon cancer progression.

View Article and Find Full Text PDF

Dipeptidyl-peptidase 4 inhibitors, DPP-4i, are an established antiglycaemic medication for Type 2 Diabetes. There has been a growing interest in DPP-4i's potential to improve wound healing and reduce fibrosis. The purpose of this study is to survey the current literature for applications of DPP-4i in wound healing and scars, and explore their potential outside of glycaemic control.

View Article and Find Full Text PDF