98%
921
2 minutes
20
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046784 | PMC |
http://dx.doi.org/10.3390/biom13030466 | DOI Listing |
Biotechnol Lett
September 2025
Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.
The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.
View Article and Find Full Text PDFJ Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Key Laboratory for Biorheological Science and Technology of Chinese Ministry of Education, National Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; JinFeng Laboratory, Chongqing, 401329, China. Electronic address: wanggx@cq
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that plays a crucial role in the pathophysiology of asthma, initiating multiple allergic cascade responses. Tezepelumab is the only monoclonal antibody currently approved for marketing, which acts by blocking TSLP binding to TSLPR. However, it is reported that a TSLP trap which simultaneously block TSLP binding with TSLPR and IL-7Rα has better efficiency in the repression of TSLP signal pathway.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Center for Genetic Engineering and Biotechnology, Cubanacan, 10600 Havana, POBox 6162, Cuba. Electronic address:
Vascular endothelial growth factor (VEGF) is a key player in the development and progression of several diseases, most notably cancer and retinal disorders. Over the last twenty years, VEGF has emerged as a significant therapeutic target for these conditions. This study reports the isolation and characterization of a fully synthetic, humanized, affinity-matured single-domain antibody fragment (VHH) designed to target VEGF.
View Article and Find Full Text PDF